INGA & NAND Instrumentation at IUAC

S.Venkataaramanan, IUAC
Co-authors

NAND: K.S. Golda, Hardev Singh*

INGA: Arti Gupta, Rakesh Kumar, R.P. Singh, Muralithar S, Ranjan Bhowmik

* Panjab University, Chandigarh
Design, Development & Implementation of

* Compact & High density Electronics
* Front end Analog & Logic circuits
* Pre-amplifiers, Shapers, TFA, CFD, TAC...
* Replacement for Commercial units
* Implementation for Large scale for Arrays
* Knowledge share & transfer
Why Develop Electronics here?

- Conventional NIM & CAMAC DAS set-up
- General purpose modules (commercial) are complex, under utilised
- Power, real estate, unreliable operation...
- Cost for large array
- Expertise.. in order to repair / maintain
- Develop Electronics as per user specifications with Performance at par commercial units
- >200 Signals (INGA), >140 signals (NAND)
INGA_ Indian National Gamma Array

- 24 Nos. Array of HPGe Clovers
- Compton Suppressed (ACS)
- National Collaborative Project
- IUAC, UGC-DAE, TIFR, BARC, SINP, VECC
- High quality signal Processing required
- Optimum utilisation of infrastructure
INGA-Clover Electronics Module

Double width NIM Cabinet

FIG: BLOCK DIAGRAM OF CLOVER ELECTRONICS
Features
- Double width NIM module
- 4 Modules in a NIM (200W) crate
- 4 Nos. Shaper cards
- 5 Nos. Timing Filter Amplifiers + CFD cards
- 1 Anti coincidence logic card
- Motherboard..Interconnections high stability Control voltage generation, DC distribution
- Time equaliser- Propagation delay equalisation
- 2 Layer PCB for easy duplication
Spectroscopy Amplifier

- 3μS, semi-Gaussian shaper (uniPolar)
- 3 gain ranges (2/4/6MeV) ~10V
- OL recovery
- Gated BLR (manual setting)
- Voltage controlled parameters are BLR LLTH, P/Z Adjustment
- PUR built-in Indication Logic
- Size: 4” x 1.5” x 1/2”
Tested with HPGe Clover- 60Co,152Eu

~9Kcps

Resolution: 1.3KeV @122KeV, 2.0KeV@1408KeV

Linearity: +/-100eV ie. ~0.01%

Peak Shift: Better than 0.025% shift in 24 Hrs for 1408keV peak
TFA + CFD Card

- Optimised for HPGe Clover
- Fixed ζ_i, ζ_d constants
- Fixed gain 1V/MeV (-2.5V)
- BLR_ Robinson diode type
- T_d: 25 nS, $F=0.3$
- LLTH : 1:100
- $T_{block} = 1.5 \mu S$
- 2 Nos CFD (F_NIM)
- ACS type : Prompt only (500nS)
Anti-Coincidence Logic

- Raw Timing HPGe & ACS are processed for PTR
- Anti-coincidence between HPGe - AC Shield is indicated
- MASTER GATE Accepted
- OR_ Prompt, TOF logic generated
- Individual ADC GATE, PUR logic
- LED indication
ACLogic card, ADC Gate, Unipolar output
Status

- Successfully used with INGA campaign at VECC
- Part of Super clover detector at GSI, Germany
- Modified version have added features
- Mass produced with better exterior finishing for INGA at IUAC
- Know-how shared with collaborators
- Superior quality Shaper for LEPS being developed
NAND-National Array of Neutron Detectors

- ~30nos. Neutron detectors with LINAC
- 5”x5” NE213 Scintillation detector, PMT: XP-4512B (Philips)
- High quality gamma, neutron separation
- Zero-cross technique PSD
- Compact (1W-NIM), cost effective electronics
NAND Electronics Module

- 1 width NIM Module, 2 Channels
- Energy & Timing signals processed
- Shaper for Dynode signal- 'E'-Calibration
- C F Discriminator
- Pulse Shape Discrimination (Z/C method)
- GDG, Built-in TAC$, TOF Logic

$ BARC developed BMC 1522 (BEL) ASIC
Fig: Block Diagram of PSD Electronics

- **F** = 0.2, **T_d** = 5nS
- **T_s** = 300nS (Z/C)
- **T_{AC}** = 100nS

- **ANODE IN**
 - **SPLITTER**
 - **LOW LEVEL DISCRIMINATOR**
 - **CONSTANT FRACTION COMPARATOR**
 - **LLTH WALK**
 - **LOW LEVEL DISCRIMINATOR**
 - **ARM_GATE**
 - **DEAD TIME CIRCUIT**
 - **DELAY**
 - **LEVEL CONVERTER**
 - **PSD DELAY**
 - **STROBE ADJUST**
 - **START & RESET GATE**
 - **TIME TO AMPLITUDE**
 - **TAC_PSD**
 - **TAC_STOP**

- **DYNOODE IN**
 - **CSA Preamplifier**
 - **BIlus SHAPER**
 - **ENERGY OUT**
 - **GAIN**
Zero Cross Method

* Large Dynamic range
* Requires Timing electronics
* Incorporates TOF measurements

Differentiation- Bipolar & Zero cross over Pulses

Different ξ decay pulses cross ZERO LINE @ different times
Optimum Pulse shape \sim300nS (ξs-Z/C) generate STOP for TAC

TIME Reference: CF Discriminator for START/GATE generation

TAC: Linear Spectrum corresponding to gamma & neutron
PSD Test Setup

* Pulse shape discrimination studied with ^{252}Cf spontaneous fission source

* Light output calibration done with standard γ sources (^{137}Cs, ^{60}Co, ^{22}Na)

* Timing performance tested in TOF set up with fast plastic scintillator

* Compared performance with commercial modules

Figure of Merit (FOM) is

$$\text{Peak separation} / \text{Fwhm } \gamma + \text{Fwhm } \eta$$
PSD for Gamma and Neutron with different threshold

IUAC_500
- FOM: 1.63 @110KeVee

IUAC_1000
- FOM: 1.72 @220KeVee

IUAC_2000
- FOM: 1.89 @440KeVee

IUAC_4000
- FOM: 2.06 @880KeVee
<table>
<thead>
<tr>
<th>Eee</th>
<th>Neutron Wall</th>
<th>IUAC$</th>
<th>DEMON*</th>
<th>Comm#</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 keV</td>
<td>-</td>
<td>1.4</td>
<td>-</td>
<td>1.27</td>
</tr>
<tr>
<td>110 keV</td>
<td>1.15</td>
<td>1.6</td>
<td>1.09</td>
<td>1.24</td>
</tr>
<tr>
<td>240 keV</td>
<td>1.54</td>
<td>1.82</td>
<td>-</td>
<td>1.65</td>
</tr>
<tr>
<td>300 keV</td>
<td>-</td>
<td>-</td>
<td>1.65</td>
<td>-</td>
</tr>
<tr>
<td>500 keV</td>
<td>1.84</td>
<td>1.89</td>
<td>-</td>
<td>1.75</td>
</tr>
<tr>
<td>1 MeV</td>
<td>2.1</td>
<td>2.06</td>
<td>2.05</td>
<td>1.91</td>
</tr>
</tbody>
</table>

* Demon: Charge Comparison method used

$ Calibration : 120 keVee ~ 500 keV η neutron energy

Reference: O.Skeppstedt et al NIM (A) 421 (1999) 531-541
Fig: ENERGY Vs PSD with two Neutron detectors
Source: Cf-252, Two Neutron detectors used
LLTH: 110keVee

Fig: 2D Plot of Energy Vs PSD
LLTH: 120keVee 252Cf
Time of Flight with Plastic Detector (START)

TOF: Fwhm: 1.2nS
2D Spectrum TOF vs PSD_Z/C
Added delay 50nS

Co-60 Source
44 Channels = 1nS

Delay = 50 nS
Status

- Adopted for existing NAND array of ~30 Detectors
- Successfully implemented and used with Linac beam
- Modified module to be adopted for BARC - Si PAD detector
Acknowledgement

Sincere Thanks to all those individuals and firms supported, participated in the successful implementation of these projects

Thanks to the Organisers of this symposium for giving this opportunity & hospitality