CONTENTS

S.No.		Chapter Particulars		Page No.
1.	ACCELERATOR		1	
	1.1	PELLE	TRON	1
		1.1.1	Operational summary	1
		1.1.2	Maintenance and development activities	3
		1.1.3	Ion source activities	6
		1.1.4	Beam pulsing system	6
		1.1.5	Low energy negative ion implanter facility	7
		1.1.6	Utilization of beam runs using 15 UD Pelletron accelerator and LINAC	8
	1.2	LOW E	ENERGY ION BEAM FACILITY	10
		1.2.1	ECR source based positive ion facility	10
		1.2.2	Atomic and molecular physics activities at LEIBF	11
		1.2.3	Experiments conducted at LEIBF in atomic and molecular physics 105° beam line	12
	1.3	PARAS		13
		1.3.1	Operation	13
		1.3.2	Maintenance	14
		1.3.2.1	Ion source maintenance	14
	1.4		LOPMENT OF NEW MAGNET FOR ION ACCELERATOR	14
	1.5		LOPMENT OF 20 KV ION ACCELERATOR IGHER MASS	15
2.	AC	CELER	ATOR AUGMENTATION PROGRAM	17
	2.1	LINAC		17
		2.1.1	Operational status of the superconducting linac	17
		2.1.2	New developments associated with superconducting linac	19

	2.1.3	Superconducting niobium resonators	19
	2.1.3.1	Low beta resonator	20
	2.1.3.2	Single spoke resonators	20
	2.1.3.3	Facility upgradation	21
	2.1.3.4	Single cell β=0.6, 650 MHz niobium cavity	22
2.2	HIGH (CURRENT INJECTOR	22
	2.2.1	High temperature superconducting ECRIS-PKDELIS and low energy beam transport (LEBT)	22
	2.2.2	Design and low power RF tests on the modulated 2.5 m RFQ accelerator	24
	2.2.3	Drift tube linac resonator	26
	2.2.4	Present status of compact diagnostic system for HCI	27
	2.2.5	48.5 MHz spiral buncher for MEBT section of HCI	28
	2.2.6	Commissioning of power amplifiers for DTL and RFQ	29
	2.2.7	Beam transport system for HCI	30
	2.2.7.1	Testing of first phase of dipole, quadrupole and steerer magnets for HCI	31
	2.2.7.2	Design of steerer magnets	32
	2.2.7.3	Transverse beam optics of HCI	33
	2.2.7.4	Power supply for HCI steerer and low power quadrupole magnets	34
	2.2.8	Development of low level RF (LLRF) control system for DTL and RFQ cavities	34
	2.2.9	Development and testing of multi-harmonic buncher (MHB) controller	34
	2.2.10	Development of the MHB for high current injector	35
	2.2.10.1	The mechanical assembly	35
	2.2.10.2	The tank circuits	35
	2.2.10.3	3 The electronics	35
2.3	CRYO	GENICS AND APPLIED SUPERCONDUCTIVITY LAB	36
	2.3.1	LHe and LN ₂ plant operation	36
	2.3.2	LINAC activities	37

		2.3.2.1	in LINAC cryomodule-II (LC-II)	3/
		2.3.2.2	Calibration of liquid helium supply valve with the dynamic RF power in linac cryomodule-II	38
		2.3.2.3	Distribution line activities	38
		2.3.3	Superconducting quadrupole magnet for HYRA	38
		2.3.4	Other development activities	39
		2.3.4.1	Oxford cryostat reactivation	39
		2.3.4.2	BRNS LN ₂ liquefier	40
		2.3.4.3	Practical load map of SRDK-415D GM cryocooler	41
		2.3.4.4	Thermal impedance of electrically insulated thermal joint for hybrid current lead	41
		2.3.4.5	6 T cryogen-free magnet system (CFMS)	42
	2.4	ELECT	RONICS FOR CRYOGENICS AND LINAC	42
	2.5		ND MICROWAVE ION SOURCE DEVELOPMENT RATORY	44
		2.5.1	2.45 GHz microwave ion source developments	44
		2.5.1.1	Installation of 2.45 GHz microwave ion source based high flux system for performing experiments related to materials science and plasma physics	44
		2.5.1.2	Simulation of the microwave injection line for 2.45 GHz microwave source	45
		2.5.1.3	Nitrogen implantation experiment and NRA characterization with analysis	45
		2.5.2	Study of the frequency tuning effect with simulations using CST particle tracking solver	47
		2.5.3.	Direct injection of intense, heavy ion beams from a high field ECR ion source into an RFQ	48
3.	RES	EARCH	H SUPPORT FACILITIES	50
	3.1	SUPPO	RT LABORATORIES	50
		3.1.1	High vacuum laboratory	50
		3.1.1.1	High current injector installation	50

3.1.1.2	Installation of capacitive pick-up devices for LINAC operation	51
3.1.1.3	LEIBF ECR source control system modification	51
3.1.1.4	Electrostatic quadrupole triplet (EQT) shorting in LEIBF	52
3.1.1.5	Maintenance activities	52
3.1.2	Beam transport system	53
3.1.2.1	Magnetic beam scanner power supply development.	53
3.1.2.2	Beam transport system maintenance	53
3.1.3	Detector laboratory	54
3.1.3.1	Detector system for quasi-elastic scattering/fission angular distribution studies	54
3.1.3.2	MWPC for mass distribution experiments in GPSC/NAND	55
3.1.3.3	MWPC with discrete delay line position readout	55
3.1.3.4	Strip detector at HYRA focal plane	55
3.1.3.5	Instrumentation	55
3.1.3.6	Activities in NUSTAR	55
3.1.4	Target development laboratory	56
3.1.5	RF and electronics laboratory	58
3.1.5.1	INGA electronics	58
3.1.5.2	Front end and PSD electronics for NAND array at IUAC	58
3.1.5.3	Development of solid state 'L' band amplifier	58
3.1.5.4	Accelerator control systems at IUAC	59
3.1.5.5	VME bus interface to magnet power supply	59
3.1.6	Computer and communications	60
3.1.6.1	High performance computing facility	60
3.1.6.2	IUAC LAN and servers	61
3.1.6.3	Administration database package	61
3.1.6.4	NIAS development	61
3.1.7	Health physics laboratory	62
3.1.7.1	Beam dump and associated shielding calculations for the upcoming FEL facility	62
3.1.7.2	High sensitive phosphor for carbon ion dosimetry	63

		3.1.7.3	Luminescence characteristics of C ⁵⁺ ions and ⁶⁰ Co irradiated Li ₂ BaP ₂ O ₇ :Dy ³⁺	65
		3.1.7.4	TL investigation of CaSO ₄ : Dy	66
		3.1.7.5	Study of thermoluminescence glow curves and XRD patterns of nanocrystalline samples	66
		3.1.8	Data support laboratory	67
		3.1.8.1	Data acquisition systems upgrade in data room	67
		3.1.8.2	Development of rlectronic modules	67
	3.2	UTILIT	TY SYSTEMS	69
		3.2.1	Electrical group activities	69
		3.2.1.1	Maintenance of electrical installations of substation, office blocks and residential colony	69
		3.2.1.2	Captive power installations	70
		3.2.1.3	Voltage stabilisers	71
		3.2.1.4	UPS installations	71
		3.2.1.5	Power factor compensation	71
		3.2.1.6	Communication equipments	71
		3.2.1.7	Energy saving	71
		3.2.1.8	Electrical earthing	72
		3.2.1.9	Electrical works for AMS facility	72
		3.2.1.10	Lighting works for EBW machine room	72
		3.2.2	Air conditioning, water system and cooling equipments	72
		3.2.3	Mechanical workshop	72
		3.2.4	Civil works	73
		3.2.5	Compressed air system and material handling equipments	74
4.	EXP	ERIME	NTAL FACILITIES IN BEAM HALL	76
	4.1	GPSC A	AND NEUTRON DETECTOR ARRAY FACILITY	76
		4.1.1	Design, fabrication and testing of MWPC	77
		4.1.2	Measurement of efficiency of neutron detectors	77

	4.2 GAMMA DETECTOR ARRAYS (GDA AND INGA)		/8	
	4.3	RECOIL	MASS SPECTROMETERS AT IUAC	80
		4.3.1	Heavy Ion Reaction Analyzer (HIRA)	80
		4.3.2	HYbrid Recoil mass Analyzer (HYRA)	80
	4.4	MATE	RIALS SCIENCE FACILITY	82
		4.4.1	Irradiation chamber maintenance	82
		4.4.2	Scanning probe microscope	82
		4.4.3	Field emission scanning electron microscope (FE-SEM)	82
		4.4.4	In-situ X-ray diffractometer	84
		4.4.5	In-situ high temperature irradiation facility	84
		4.4.6	Installation and testing of RF sputtering setup	84
		4.4.7	Online-elastic recoil detection analysis facility	85
		4.4.8	Insitu-residual gas analysis setup	85
		4.4.9	RF sputtering and ECR CVD systems	85
		4.4.10	Status report on spectroscopy facilities	86
		4.4.11	Reinstallation of low temperature magneto-transport set up using 8 T Oxford cryostat	86
		4.4.12	Magnetoresistance study of YBCO/Ag composites	87
	4.5	RADIA	ATION BIOLOGY EXPERIMENTAL FACILITY	88
	4.6	ATOM	IC PHYSICS FACILITY	88
		4.6.1	A setup for studying the charge state fraction of post collisional Ions	88
	4.7	ACCE	LERATOR MASS SPECTROMETRY	90
		4.7.1	¹⁴ C AMS facility	90
5	RES	EARC	HACTIVITIES	92
	5.1	NUCL	EAR PHYSICS	92
		5.1.1	RDM lifetime measurements in Pd nuclei with mass ~ 100	93
		5.1.2	Studying the superdeformed band in 133Nd	94
		5.1.3	Fission fragment mass distributions for ²⁰⁰ Pb	96

	5.1.4	Excitation functions in ¹³ C+ ¹⁶⁹ Im: A low energy incomplete fusion process	98
	5.1.5	Angular distribution of fission fragments in ¹⁹ F+ ²⁰⁶ Pb reaction	99
	5.1.6	Measurement of neutron multiplicity from fission of ²²⁷ Pa	100
	5.1.7	Lifetime measurements in ¹⁸⁸ Pt	101
	5.1.8	Low energy incomplete fusion results with MARC model	102
	5.1.9	Evaporation residue measurements in the 16,18O+181Ta reactions	103
	5.1.10	Measurement of evaporation residue excitation functions and barrier distributions for the reactions ¹⁶ O+ ^{174,176} Yb	105
	5.1.11	Fusion cross-section measurements for ²⁸ Si + ⁹⁶ Zr system	106
	5.1.12	Systematic study of P _{CN} in pre-actinides	107
	5.1.13	DCO ratio analysis of high spin states in 67Ga	109
	5.1.14	g-factor and quadrupole moment of $11/2^-$ and $23/2^+$ isomeric states in ^{135}La	111
	5.1.15	Measurement of barrier distribution for the ²⁸ Si+ ¹⁵⁴ Sm system through quasi-elastic scattering	113
	5.1.16	Study of entrance channel dynamics in fusion-fission reactions through fission fragment mass distributions	114
	5.1.17	Two-quasiparticle band structures in 70Ge	116
	5.1.18	Feeding intensity profiles from spin distribution measurements in ¹⁶ O+ ¹⁵⁹ Tb system	118
5.2	MATE	RIALS SCIENCE	119
	5.2.1	Study of swift heavy ion induced modifications of multiferroic epitaxial GaFeO ₃ thin films	120
	5.2.2	Synthesis of zinc oxide nanostructures by swift heavy ion irradiation	122
	5.2.3	Effect of 80 MeV carbon ion irradiation on hydrothermally derived, elongated oxide nanostructures	123
	5.2.4	Study of the radiation induced modification in the properties of nanostructures	124
	5.2.5	Effect of high energy carbon ion beam irradiation on the electrocatalytic activity of carbon nanotube modified glassy carbon sensor	125
	5.2.6	100 MeV Si ⁹⁺ ion irradiation effects on structural and antimicrobial properties of polypyrrole nanotubes-silver nanoparticle nanocomposites	126

5.2.7	Ion velocity effect on SHI induced mixing	127
5.2.8	Effect of 100 MeV Au ion irradiation on Ni/Bi bilayer system	128
5.2.9	Effects of transition metal swift heavy ion irradiation on 4H-SiC	129
5.2.10	Reduction of graphene oxide by 100 MeV Au ion irradiation	131
5.2.11	Swift heavy ion induced optical and structural modification in ZnO thin film	132
5.2.12	Ferromagnetism in oxygen ion irradiated SnO ₂	133
5.2.13	Swift heavy ion irradiation induced phase transformation in undoped and niobium doped titanium dioxide thin films	135
5.2.14	100 MeV Si ion irradiation effect on multiferroic nanocomposite	136
5.2.15	Swift heavy ion induced structural modification in Ni _{0.58} Zn _{0.42} Fe ₂ O ₄ nanoferrite	137
5.2.16	The effect of 120 MeV Ag9+ irradiation on the composite ferrites	139
5.2.17	Resistance switching and structural properties of 120 MeV Au ⁺⁹ irradiated LaCoO ₃ (LCO) thin film nanostructures	140
5.2.18	The effect of 120 MeV Au ⁹⁺ ion beam irradiation on structural, optical, electrical and magnetic properties of Sn _{0.9} Mn _{0.1} O ₂₋₈ thin films	141
5.2.19	Structural and magnetic properties of 100 MeV Ag^{7+} ion irradiated $Ti_{1-x}CoxO_{2-\delta}$ thin films on $LaAlO_3$ substrate	143
5.2.20	Effect of swift heavy Li ³⁺ ions irradiation on Mn doped ZnO thin films	144
5.2.21	Luminescence properties of sol-gel derived 100 MeV Si ⁸⁺ ion bombarded pure and Nd ³⁺ doped Y ₂ O ₃ nanophosphor	145
5.2.22	Swift heavy ion induced modification on the structural, luminescence and optical studies of rare earth doped alkali-alkaline based oxide phosphors	147
5.2.23	Ion irradiation studies of Ni-Ti shape memory alloys thin films	148
5.2.24	100 MeV induced SHI irradiation phase transformation in CdS_{1-x} Se_x thin films	149
5.2.25	Characterization of PZT thin films using SPM and NSOM measurements	150
5.2.26	Surface modification of PVA containing Zn incorporated HAp coatings on titanium by gold ion irradiation	152

	5.2.27	Effect of low energy ion irradiation on the transport and structural behaviour of organic hole conductors	153
	5.2.28	Ion Iiradiation induced modifications of P3HT polymer	154
	5.2.29	Heavy ion irradiation study in SS316	155
	5.2.30	Structural evolution in III-V semiconductors by high energy ion irradiation	156
	5.2.31	Electric and dielectric characteristics of Ni/n-GaAs Schottky diode under swift heavy ion irradiation	158
	5.2.32	Generation of calibration curve for neutron dosimetry via LET spectrometry	159
	5.2.33	Radiation damage and H/D retention studies in ion-irradiated tungsten	160
	5.2.34	Nanoscale resistive switching in Ar ⁺ -ion irradiated TiO ₂ layers on Pt	161
	5.2.35	Enhanced photo-absorption and super paramagnetic behaviour from TiO ₂ nanostructures	162
	5.2.36	Synthesis and characterization of α-Fe ₂ O ₃ thin films	164
	5.2.37	Influence of ion flux and fluence on evolution of phonon modes of zinc oxide thin films under 300 keV argon ion irradiation: micro-Raman studies	165
	5.2.38	Effect of 200 keV Si- ion irradiation on g-C ₃ N ₄	165
	5.2.39	Fabrication of p-n junction diode by doping p-type impurity in n-type indium antimonide nitride / indium antimonide bismide	167
	5.2.40	Ion beam induced optical and surface modification in coupled plasmonic nanostructures	168
	5.2.41	To study the effect of low energy Ar ion irradiation on the optical properties of gold nanogratings and its application in biological sensing	170
	5.2.42	Native defects and optical properties of argon ion irradiated ZnO	171
5.3	RADIA	TION BIOLOGY RESEARCH	173
	5.3.1	Sodium fluoride toxicity and its combined effect with ¹² C-ion beam radiation on A549 lung cancer cell line	173
	5.3.2	Radiosensitization of A549 lung cancer cells with anti GFR conjugated Au nanoparticles	173

	5.4	ATOM	IC AND MOLECULAR PHYSICS RESEARCH	176
		5.4.1	Role of surface wake field in forming beam-foil circular Rydberg states	176
		5.4.2	Observations of autoionizing Rydberg states of Li-like V	177
		5.4.3	Sudden enhancement in ionization of projectile ions at the Coulomb barrier energies	179
		5.4.4	A parameterized model for Coulomb barrier heights	180
	5.5	ACCEL	LERATOR MASS SPECTROMETRY RESEARCH	183
		5.5.1	Geochronological applications of cosmogenic radionuclides in the neogene-quaternary deposits of Siwaliks (Himachal Pradesh) and Narmada valley (Madhya Pradesh)	183
		5.5.2	Cosmogenic ¹⁰ Be dating of the samples collected from different locations to determine their palaeoenvironmental implications	185
6.	AC	ADEMIC	CACTIVITIES	187
	6.1	BEAM	UTILIZATION BY USERS	187
		6.1.1	LEIBF (positive and negative ion) beam time utilization and experiments performed (April, 2014 to March, 2015)	187
		6.1.2	Pelletron beam time utilization and experiments performed (April, 2014 to March, 2015)	189
		6.1.3	List of users	190
	6.2	STUDEN	NT PROGRAMMES	199
		6.2.1	Summer project for B.Sc. (Physics) students	199
		6.2.2	M. Sc. orientation programme	200
		6.2.3	PhD teaching programme	201
		6.2.4	Teaching aaboratory activities	202
		6.2.4.1	NaI + PMT gamma-ray spectroscopy system	202
		6.2.4.2	Alpha particle detection and pulse processing system	203
		6.2.4.3	Multi channel analyzer using PHOENIX	204

6.3	LIBRA	RY	204
6.4	ACADE	EMIC ACTIVITIES HELD IN 2014-15	205
6.5	FORTH	ICOMING EVENTS: 2015	207
6.6	LIST O	F PH.D AWARDEES	208
6.7	LIST O	F PUBLICATIONS IN THE YEAR 2014-15	209
6.8	LIST O	F SEMINARS CONDUCTED IN THE YEAR 2014-15	218
6.9	LIST O	F TECHNICAL REPORTS /MEMOS (2014-15)	221
6.10	PROGE	OLS, WORKSHOPS, ACQUAINTANCE RAMMMES, FOUNDATION DAY AND NAL SCIENCE DAY CELEBRATIONS	223
	6.10.1	School on accelerator science and technology	223
	6.10.2	IUAC acquaintance programme at university of Kashmir, Srinagar	224
	6.10.3	IUAC acquiantance programme at Visvesvaraya Technological University, Belgaum	224
	6.10.4	IUAC acquaintance programme at DAV, Indore	225
	6.10.5	Foundation day celebration at IUAC	226
	6.10.6	National science day	227
	6.10.7	Indo-Japan school on advanced accelerators for ions and electrons	227
	6.10.8	Independence day and republic day celebrations	228
	6.10.9	Annual cultural programme	229
	6.10.10	Swachh Bharat celebrations	230
APPEND	IX I		231
APPEND	II XIO		240
APPEND	III XIO		244