CONTENTS

1.	AC	CELER	ATOR	1
	1.1	OPER	ATIONAL SUMMARY	1
	1.2	MAIN	TENANCE AND DEVELOPMENT ACTIVITIES	3
	1.3	ION S	OURCE ACTIVITIES	5
	1.4	BEAM	I PULSING SYSTEM	5
	1.5	DEVE	LOPMENT ACTIVITIES	6
	1.6	ACCE	LERATOR MASS SPECTROMETRY (AMS)	6
		1.6.1	New additions in the system	7
		1.6.2	Development of Ultra-Clean Chemistry Laboratory	7
		1.6.3	¹⁰ Be measurement from quartzite samples around the Main Central Thrust (MCT), Himalaya using AMS	8
		1.6.4	Measurement of ¹⁰ Be conc. in sediment core samples from Uttarangudi site using AMS	8
2.	AC	CELER	ATOR AUGMENTATION PROGRAM	11
	2.1	LINA	C	11
		2.1.1	Acceleration through all the eight resonators of linac cryostat # 1	11
		2.1.2	Preparation of other resonators to be installed in linac cryostats 2 and 3	13
		2.1.3	Use of Piezo-electric actuator as an alternative tuning mechanism of superconducting resonators	13

	2.1.4	Superconducting Niobium Resonators	14
	2.1.4.1	Resonator Production for the 2 nd & 3 rd Linac Modules	14
	2.1.4.2	Spoke Resonators	15
	2.1.4.3	Tesla-type Single Cell Cavity	16
2.2	CRYO	GENICS	17
	2.2.1	Cryogenic Facility	17
	2.2.2	LINAC Cryomodules	18
	2.2.3	Other Development Projects	19
2.3	RF ELI	ECTRONICS	22
	2.3.1	Status Report of the Multi-harmonic Buncher & the High Energy Sweeper and associated jobs	22
2.4	BEAM	TRANSPORT SYSTEM	23
	2.4.1	Design of new Low Energy Ion Beam Facility	23
	2.4.2	Beam Optics of High Current Injector	24
	2.4.3	Design of 48.5 MHz RF bunchers for HCI	28
	2.4.4	Power supplies ($\pm 10A/15V$) for magnetic micro steerers:	29
	2.4.5	Power supplies (±3A/30V) for LEIBF steerer magnets:	29
	2.4.6	High voltage power supply (3kV, 200mA) for saddle field atom source:	30
	2.4.7	Linear bipolar HV amplifier (±2kV) for electrostatic steerer/ sweeper:	30

	2.5	LOW	ENERGY ION BEAM FACILITY (LEIBF)	30
		2.5.1	10 GHz Electron Cyclotron Resonance Ion Source (ECRIS) based Low Energy Ion Beam Facility (LEIBF)	30
		2.5.2	High Temperature Superconducting ECRIS -PKDELIS and Low Energy Beam Transport (LEBT)	34
	2.6		POWER RF TEST ON THE 1.17M MODULATED OTYPE RFQ ACCELARTOR	39
		2.6.1	Development of Drift Tube Linac at IUAC	39
3.	RES	SEARC.	H SUPPORT FACILITIES	43
	3.1	HIGH	VACUUM LABORATORY	43
		3.1.1	Installation of new LEIBF Facility	43
		3.1.2	Installation of New Gas Cell Absorber in AMS Set-up	43
		3.1.3	Installation of Raman Chamber in Materials Science Phase II Beam Line	43
		3.1.4	Installation of Electrostatic Analyzer in Phase II Atomic Physics Line	43
		3.1.5	Local Controller for Double Slit for ECR Beam Line	44
		3.1.6	Design and Development of Electronic Modules for New LEIBF	44
		3.1.7	Modification and Installation in Ion Source Test Bench	44
	3.2		TENANCE AND SERVICING OF POWER LIES AND MAGNETS	45
		3 2 1	Ream Transport System Maintenance	45

	3.2.2	Target Development Lab power supplies	46
	3.2.3	Detector bias High Voltage power supplies	46
3.3	DETE	CTOR LABORATORY	47
	3.3.1	Charged particle detector array for INGA	47
	3.3.2	Fast timing MWPC	48
	3.3.3	Testing of Silicon Strip Detector with resistive strips	49
	3.3.4	Detector system for transfer studies in GPSC	49
	3.3.5	Silicon strip detector readout using MANAS chip	50
3.4	TARG	ET DEVELOPMENT LABORATORY	51
	3.4.1	Characterization of nc-Ge prepared by ABS and RTA	54
3.5	RF &	ELECTRONICS LABORATORY	55
	3.5.1	INGA-LEPS Electronics module	55
	3.5.2	Status of various electronics for NAND array at IUAC	56
	3.5.3	VME based readout module for Analog multiplexed ASICs	58
3.6	ELEC	TRICAL GROUP ACTIVITIES	59
	3.6.1	Captive Power Installations	60
	3.6.2	Power Stabilisers	60
	3.6.3	UPS Installations	60
	3 6 4	Power Factor Compensation	60

	3.6.5	Wireless Communication Equipments:	60
	3.6.6	Maintenance of Substation, Power and Lighting Installations of Office Complex and Residential Colony	61
	3.6.7	Energy Saving	61
	3.6.8	Installation for Beam Hall-II	61
	3.6.9	Electrical System For 1.7 MV Pelletron	61
	3.6.10	11 kV Compact Outdoor Electric Sub Station	61
	3.6.11	AMS Lab Electrical Works With No Metal Parts Exposed	62
	3.6.12	Electrical System for HPC Set Up	62
	3.6.13	Residual Current ACB's for UPS Protection	62
	3.6.14	Outdoor Surveillance System	62
	3.6.15	Setup of 400 kV High Voltage Area for LEIBF	63
3.7		RESSED AIR SYSTEM AND MATERIAL LING EQUIPMENTS (MG I)	63
3.8		ONDITIONING, WATER SYSTEM AND ING EQUIPMENTS	64
3.9	CIVIL	WORKS	66
3.10	HEALT	TH PHYSICS	67
	3.10.1	Nanoparticles of BaSO4:Eu for heavy-dose measurements.	68
	3.10.2	Thermoluminescence Study of UV Irradiated Ce Doped SrS Nanostructures	69

3.12	MECH.	ANICAL WORKSHOP	75
	3.11.4	Servicing and Maintenance	75
	3.11.3	Development of 2-Channel Fast Rate Divider module	75
	3.11.2	Development of single width 8 channel CAMAC 4K ADC module	74
	3.11.1	Development of 4-Channel CAMAC module for Tesla Meter Readout	74
3.11	DATA S	UPPORT LABORATORY	74
	3.10.11	Measurement of Natural Radioactivity in Brick Samples Using Gamma-Ray Spectrometry	73
	3.10.10	Use of Gamma-Ray Spectrometry for Assessment of Natural Radioactive Dose in Some Samples of Building Materials	73
	3.10.9	Analysis of terrestrial naturally occurring radionuclides in soil samples from some areas of Sirsa district of Haryana, India using gamma ray spectrometry	72
	3.10.8	Monitoring of radon and its progeny in the environment of the vertical 15UD Pelletron Accelerator facility.	72
	3.10.7	Thermoluminescence response and trap parameters determination of gamma exposed Ce doped SrS nanostructures	71
	3.10.6	Synthesis and Characterization of Bismuth doped Barium sulfide Nanoparticles	71
	3.10.5	Photoluminescence, thermoluminescence and Raman studies of CdS nanocrystalline phosphor	70
	3.10.4	Luminescence studies and effect of etching on cerium doped CaS nanoparticles	70
	3.10.3	Thermoluminescence study of UV irradiated Ce doped SrS nanostructures	69

4.	EXI	PERIM	ENTAL FACILITIES IN BEAM HALL	77
	4.1	GENE	RAL PURPOSE SCATTERING CHAMBER (GPSC)	77
		4.1.1	Neutron Cross-talk in Modular Detector Arrays- a Monte-Carlo Simulation	77
	4.2	GAMN	MA DETECTOR ARRAY (GDA)	78
		4.2.1	Indian National Gamma Array (INGA)	79
		4.2.2	Experiments using GDA / INGA related facilities	81
	4.3	RECO	OIL MASS SPECTROMETERS	83
		4.3.1	Heavy Ion Reaction Analyzer (HIRA)	83
		4.3.2	HYbrid Recoil mass Analyzer (HYRA)	85
	4.4	MATE	CRIALS SCIENCE BEAMLINE	91
		4.4.1	Irradiation chamber maintenance	91
		4.4.2	Scanning Probe Microscope	92
		4.4.3	In-situ X-ray Diffractometer setup	93
		4.4.4	CCR system for in-situ XRD	93
		4.4.5	Plasma based systems for thin film deposition	93
		4.4.6	Field emission scanning electron microscope (FE-SEM)	94
		4.4.7	In-situ Micro-Raman facility in beam Hall II	95
		4.4.8	Growth of Gold Nanostuctures on Ion Sputtered Rippled Silica Templates	96

	4.5	RADIA	ATION BIOLOGY	97
		4.5.1	Status of the Radiation Biology Beam line	97
		4.5.2	Status of the Molecular Radiation Biology Laboratory	98
	4.6	ATOM	IC PHYSICS	99
		4.6.1	A set up for studying the role of hyperfine splitting on inner shell ionization phenomenon	99
5.	RES	SEARCI	H ACTIVITIES	101
	5.1	NUCLI	EAR PHYSICS	101
		5.1.1	Lifetime measurements in ¹²³ Cs	102
		5.1.2	The question of dynamic chirality in nuclei: the case of ¹⁰² Rh	104
		5.1.3	Search for Anti-magnetic rotation in ¹⁰⁵ Cd	106
		5.1.4	Structure of ¹⁶⁹ W	109
		5.1.5	Study of high-spin structure of the nuclei around $Z = 82$ shell closure	112
		5.1.6	Transition Rates in Mirror Nuclei ³⁵ Ar and ³⁵ Cl	113
		5.1.7	Evidence of Shear Band in 111In	116
		5.1.8	Study of strongly deformed intruder band in ¹¹³ Sb	117
		5.1.9	Search for chiral partner bands in 98Tc	118
		5.1.10	In beam Spectroscopy of Negative Parity States in ¹³⁵ Pr	120
		5.1.11	Investigation of high spin states and isomer decay in doubly odd ²⁰⁸ Fr	122

5.1.12	Lifetime Measurement in ¹³⁹ Pr	124
5.1.13	First observation of high excited states in ¹²⁶ I	126
5.1.14	Incomplete fusion dynamics in $^{16}O + ^{124}Sn$ system by spin distribution measurement	128
5.1.15	Observation of Pre-equilibrium particle emission by measurement of yield ratio	131
5.1.16	g-Factor Measurement of 9/2 ⁻ Isomer in ¹²⁹ Ba	134
5.1.17	Fission fragment mass ratio distribution measurements for 24 Mg + 186 W reaction at energies around the Coulomb barrier	135
5.1.18	Multi-nucleon transfer reactions for ²⁸ Si+ ^{90,94} Zr systems in sub and near barrier region	138
5.1.19	Fission mass widths in ²¹³ Fr	141
5.1.20	Neutron multiplicity measurements for ¹⁹ F + ^{194, 198} Pt systems at high excitation energy to understand the role of shell closure in fission dynamics	143
5.2	MATERIALS SCIENCE	147
5.2.1	Hydrogen content in Mg and Mg/Al films by ERDA	148
5.2.2	In-situ Quadrupole mass analyzer of ion irradiated LAHCl.H ₂ O and LA2HBr.H ₂ O single crystals and effect of ion irradiation on LAHCl.H ₂ O single crystal	149
5.2.3	Swift heavy ion (SHI) induced mixing and gas evolution study in Ni-teflon system	151
5.2.4	Swift Heavy Ion Induced Modification in Te/Bi Bilayer System	153
5.2.5	Swift heavy ion induced modification in In/Te	155

5.2.6	Swift heavy ion induced mixing at Mn/Si interface	156
5.2.7	Structural modifications of Carbon nanotubes by swift heavy ion irradiation	157
5.2.8	Structural and AFM/MFM studies of nickel nanostructures embedded in Al ₂ O ₃ matrix	159
5.2.9	Ion irradiation effect on nanocrystalline thin films of PbS	160
5.2.10	SHI effects on Ge+SiO ₂ composite films prepared by RF sputtering	161
5.2.11	Studying deformation behavior of Si nanosprings by low and high energy ion beams and investigating the effect on their mechanical stiffness	162
5.2.12	Nanoscale surface engineering of single crystalline oxide substrates using ion beams	165
5.2.13	Optical Properties of ZnO/PMMA Nanocomposites Irradiated with Ni +8 Ion	167
5.2.14	The Effect of Ion Beam on PVDF copolymer / Layered Silicate Nanocomposites	168
5.2.15	SHI irradiation effects on optical and electrical properties of PPy-SnO ₂ nanocomposites	169
5.2.16	Effect of SHI irradiation on thermal and structural properties of Fe ₂ O ₃ /polymer nanocomposites	172
5.2.17	Synthesis of Metal nanoparticles using ion beam sputtering	173
5.2.18	Swift heavy ion induced modifications of Au/a-C nanocomposite thin film	175
5.2.19	Performance of swift heavy ion irradiated mesoporous nanocrystalline TiO ₂ in dye-sensitized solar cells	177
5.2.20	100 MeV O ⁷⁺ Irradiation Induced Effects in Zinc Ferrite Nanoparticles	179

5.2.21	Study of Magnetic Resonance in Zinc Ferrite Nanoparticles Irradiated with 200 MeV Ag ¹⁵⁺ Ion Beam	181
5.2.22	Swift Heavy Ion Induced Modifications in Nano-crystalline Microwave Dielectric BaTi ₄ O ₉ ceramics	182
5.2.23	Swift Heavy Ion irradiation induced enhancement in ionic conductivity of P (VdF-HFP) based nanocomposite electrolytes	184
5.2.24	Optoactive properties of carbon ions irradiated nanocrystalline polycarbonate	186
5.2.25	On the role of microstructure in determining the energy relaxation processes of swift heavy ions in thin film semiconductors	187
5.2.26	Effects of SHI on Band gap of Strained AlGaN/GaN Multi Quantum Wells	188
5.2.27	Modifications on CdS Thin Films due to Low Energy Ions Bombardment	190
5.2.28	Electronic energy loss dependence studies on dislocations in MOCVD grown GaN	192
5.2.29	Swift heavy ion induced phase transition in CdTe films deposited by spray pyrolysis in presence of electric field	193
5.2.30	Effect of 100 MeV Ag ion on SnO ₂ thin films	194
5.2.31	Band gap controlled H loss from passivated Hg _{1-x} Cd _x Te (MCT) wafers under intense electronic excitation	196
5.2.32	Effects due to Ag ⁹⁺ Ion Irradiated SnSe Thin Films and their Characterizations	197
5.2.33	Study of Ion Irradiation on Transition Metal Doped ZnO as a Host of Dilute Magnetic Semiconductor	198
5.2.34	Ion-Beam Induced Effects On Tin Nitride Thin Films	199

5.2.35	The effects of linear energy transfer on degradation of I-V characteristics of N-Channel MOSFETs	201
5.2.36	Comparison of different LET high energy ion irradiation effects on Si BJTs	203
5.2.37	Ion beam induced modifications in spray deposited CdO thin films	205
5.2.38	Resistive switching induced by 100 MeV Ag^{+7} ion irradiation in Ag $La_{0.7}$ $Sr_{0.3}$ MnO ₃ /Ag planar structures	206
5.2.39	Effect of swift heavy Li ⁴⁺ ion irradiation on the spray deposited molybdenum doped indium oxide thin films	208
5.2.40	Study of swift heavy ion irradiation effect on indium tin oxide coated electrode for the dye-sensitized solar cell application	209
5.2.41	Effect of heavy ion irradiation on corrosion/oxidation behaviour of amorphous alloys	211
5.2.42	Gas Sensing Studies of Swift Heavy Ion Irradiated Hydroxyapatite Thick Films	213
5.2.43	Structure, Microstructure and dielectric properties of ¹⁰⁷ Ag ¹⁵⁺ and ¹⁶ O ⁷⁺ irradiated Ba[(Mg _{0.32} Co _{0.02})Nb _{0.66}]O ₃ thin films	215
5.2.44	86 MeV O ⁶⁺ ion irradiated modifications in PVDC	217
5.2.45	Swift heavy ion irradiation induced benzenoid to quinoid transition in polyaniline nanofibers	218
5.2.46	Mechanism of Charge Transport in 100MeV Swift Heavy Ions (Silver (Ag ⁸⁺)) Beam irradiated Poly (3-Hexyl-Thiophene)	220
5.2.47	Structural Changes In Makrofol-Kg And Pet By 120 Mev Ni ⁺⁹ Ion Beam Irradiation	223

	5.4.3	Orientation Effects in Fragmentation of Molecules by heavy ion impact	234
	5.4.2	Role of hyperfine structure on inner shell ionization	233
	5.4.1	Radiative resonant energy transfer during beam-foil excitation	231
5.4	ATOMIC PHY	SICS RESEARCH	231
	5.3.1	Induction of Apoptosis and Cell Cycle Alteration of Human Cervical epithelial Carcinoma (HeLa) cells in response to high LET radiation ¹² C ⁶⁺	229
5.3		ADIATION BIOLOGY RESEARCH AT HEAVY IONS	229
	5.2.54	Swift heavy ions induced modifications in structural and electrical properties of polyaniline	228
	5.2.53	Study of optical band gap, carbonaceous clusters and structuring in CR-39 and PET polymers irradiated by 100MeV O ⁷⁺ ions	227
	5.2.52	Effects of Oxygen Ion Beam (O+7, 100 MeV) and Gamma Irradiation on Polypyrrole Film	227
	5.2.51	Low Temperature resistivity study of nanostructured polypyrrole films under electronic excitations.	226
	5.2.50	Thermoluminescence response of CaS:Bi3 ⁺ nanophosphor exposed to 200 MeV Ag ⁺¹⁵ ion beam	225
	5.2.49	Comparative study of different nanocrystalline TL dosimeters with 150 MeV Proton beam	225
		Proton beam dosimetry using nanocrystalline $K_2Ca_2(SO_4)_3$:Eu	224

	6.1.1	Pelletron Beam Time Utilization and Experiments performed (April 2009 - March 2010)	237	
	6.1.2	List of Users Family	238	
6.2	M. SC	. ORIENTATION PROGRAMME	243	
6.3	LIBRARY		243	
6.4	THE P	PHD TEACHING PROGRAMME	244	
6.5	ACAD	DEMIC ACTIVITIES HELD IN 2009-10	245	
6.6	FORT	HCOMING EVENTS: 2010	246	
6.7	LIST O	F SEMINARS CONDUCTED IN THE YEAR - 2009-10	247	
6.8	LIST	OF PUBLICATIONS (2009-2010)	248	
	A. NU	CLEAR PHYSICS	248	
	B. MA	TERIALS SCIENCE	252	
	C. OTI	HERS	260	
6.9		OF TECHNICAL REPORTS / TECHNICAL OS (2009-10)	262	
	A. List	of Technical Reports	262	
	B. List	of Technical MEMOS	263	
6.10	TEAC	HING LAB ACTIVITIES	264	
Appe	Appendix – I COMMITTEES			
Appe	Appendix – II IUAC PERSONNEL			
Appe	Appendix - III LIST OF USERS			