
Applications of Ion Accelerator

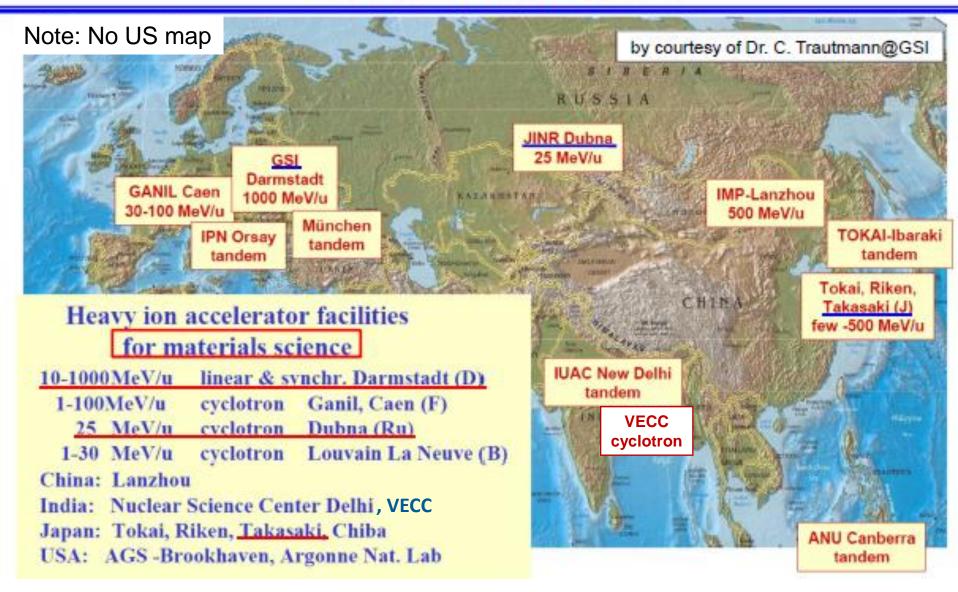
Ken Takayama^{1,2} and Tanuja Dixit³

¹High Energy Accelerator Research Organization (KEK) ²Tokyo Institute of Technology ³Department of Electronics & Information Technology (SAMEER)

Indo-Japan Accelerator School at IUAC, 2/16-18 2015

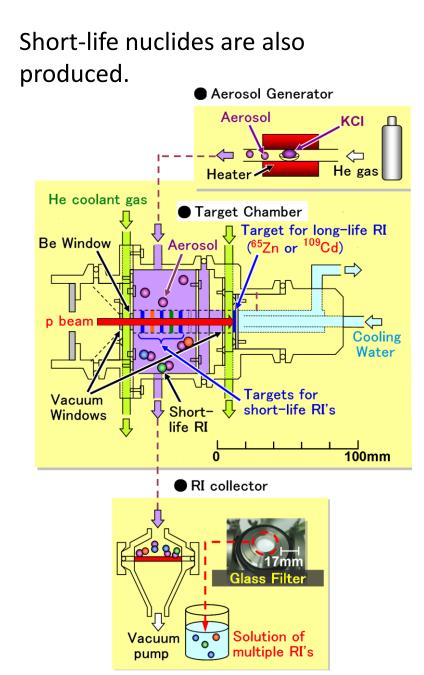
	Subject
1.	Overview on Applications of Medium Energy Ion Accelerator Including the comparison with other quantum beams from AFAD2009-2015
2.	RI for Industrial use and RI medicine
	Novel Materials
	Bio/Agriculture
	Medical (Introduction)
3.	South Asia Standard Model for Hadron Cancer Therapy Driver based on Ideal Digital Accelerator

By courtesy of Dr. Yamaki (JAEA-Takasaki) (KEK-NM Accelerator School in 2014)


Fundamental Problems for Humankind or Earth in 21st Century and Direct Contribution of High Energy Quantum Beams for their Resolution

This table is written based on the presentations at the past AFADs.

Quantum beam species	Environment	Energy	Water	Food	Life care	Quality of life
Electron	Enhancing chemical treatment of contaminated gas and sludge in a large scale		Sterilization/ sanitation of contaminated water in a large scale	Pest control of fruits in a commercial scale (as a x- ray converter)	•Cyber knife •Intensity Modulated Radiation Therapy (IMRT)	A lot of industrial product with a long his.
Proton					Cancer therapy driverBNCT driverRadio isotope medicine	as a compact neutron driver
Heavy ions	Mutation (*) of root nodule bacteria trapping N(**) in soil, by increasing its capability by a factor of ten ** N ₂ O (global- warming gas) which has larger effects by a factor of 300 than CO ₂	 •Mutation (*) of microorganism, by increasing its photosynthesis oil production capability •Mutation(*) of crop plant for bio fuel •Fuel cell 		Mutation (*) of crop plant Keeping/increa sing production/ha in climate change	 Cancer therapy driver Materials for medical use 	 Novel materials aiming industrial applicatio ns RI tracer


Heavy ion mutation, which is a kind of accelerated evolution in organisms, must be distinguished from gene-transplant technology.

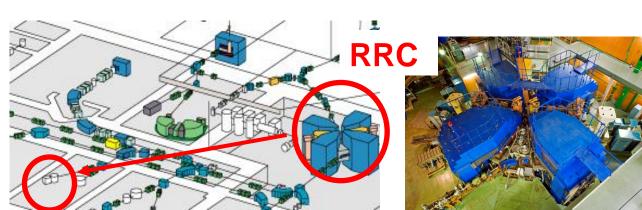
Worldwide Large Accelerators & Tandem Facilities

Production of long-life nuclides at RIKEN (by Kambara at JAAWS 2010)

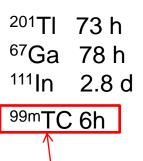
Nuclide	Half Life (days)	Production Reaction
⁷ Be	53	⁷ Li(p,n)
⁴⁸ V	15.97	⁴⁸ Ti(p,n)
⁵² Mn	5.591	⁵² Cr(p,n)
⁵⁴ Mn	312	⁵⁴ Cr(p,n)
⁶⁵ Zn	244.3	⁶⁵ Cu(p,n)
⁶⁷ Cu	2.58	⁷⁰ Zn(p,α)
⁸³ Rb	86.2	⁸¹ Br(α,2n)
⁸⁵ Sr	64.84	⁸⁵ Rb(p,n)
88 Y	106.7	⁸⁸ Sr(p,n)
⁸⁹ Zr	3.27	⁸⁹ Y(p,n)
^{92m} Nb	10.15	⁹² Zr(p,n)
^{95m} Tc	61	⁹⁵ Mo(p,n)
⁹⁹ Rh	16	⁹⁹ Ru(p,n)
¹⁰⁹ Cd	462.6	¹⁰⁹ Ag(p,n)
¹³⁹ Ce	137.6	¹³⁹ La(p,n)
¹⁷⁵ Hf	70	¹⁷⁵ Lu(p,n)
¹⁷⁷ Ta	2.357	¹⁷⁷ Hf(p,n)
²⁰³ Pb	2.161	²⁰³ TI(p,n)
²⁰⁶ Bi	6.243	²⁰⁶ Pb(p,n)

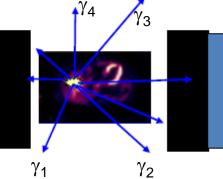
Industrial applications of the RIKEN cyclotrons T.Kambara (RIKEN)

At RIBF, ion beams including RI beams are utilized for industrial applications.

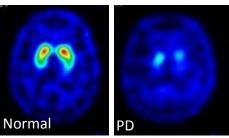

- Three nuclides (Zn-65, Cd-109 and Y-88) produced at AVF and RRC are distributed for charge.
 Industrial use of ion beam and RI beam has been started since 2009.
- Development of radiation-tolerant Power MOS-FET bored on satellites Simulation of cosmic-rays with Kr-86 beam from RRC (36 MeV/u).
- Wear diagnostics of machine parts using RI-beam implantation

Nuclide	Cd-109		Zn-65	
	Order	Quantity (MBq)	Order	Quantity (MBq)
FY2007 (Nov)	1	5	2	12.1
FY2008	6	33	7	38.7
FY2009	3	25	16	116.1
FY2010(AprNov)	3	20	12	52.4
Total	6	83	7	219.3

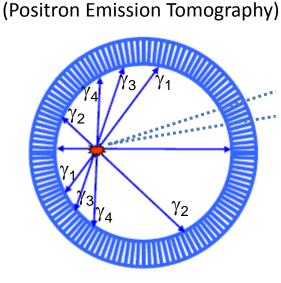

Wear Diagnostics with RI Tracer Gamma-ray Ge-Detector


RI Nuclides for PET and SPECT

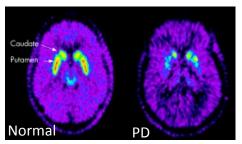
Nuclide


So-far this nuclide had been provided from 5 nuclear reactors in the world.

Unstable operation due to unscheduled shutdown. SPECT (Single-Photon Emission Computed Tomography)


Single-photon emission at a time

Parkinson's disease


^{99m}Tc-TRODAT-1

(林口總院核子醫學科 張秀萍, 林昆儒)

PET

 $e^+ + e^- \rightarrow 2\gamma$

¹⁸F-FDOPA PET

(Applications of positron emission tomography (PET) in neurology, 2004)

Nuclide

1

1

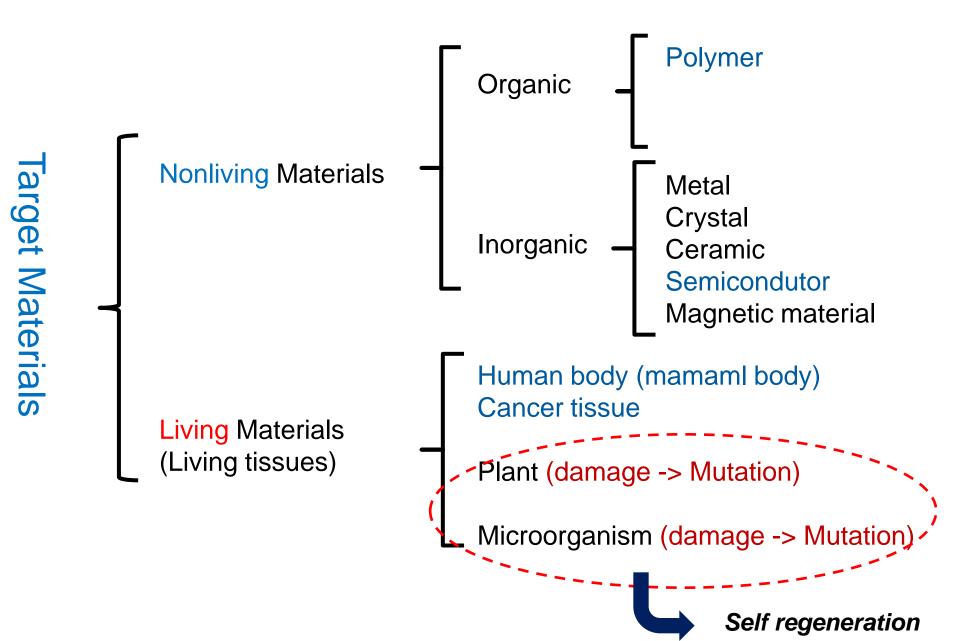
1

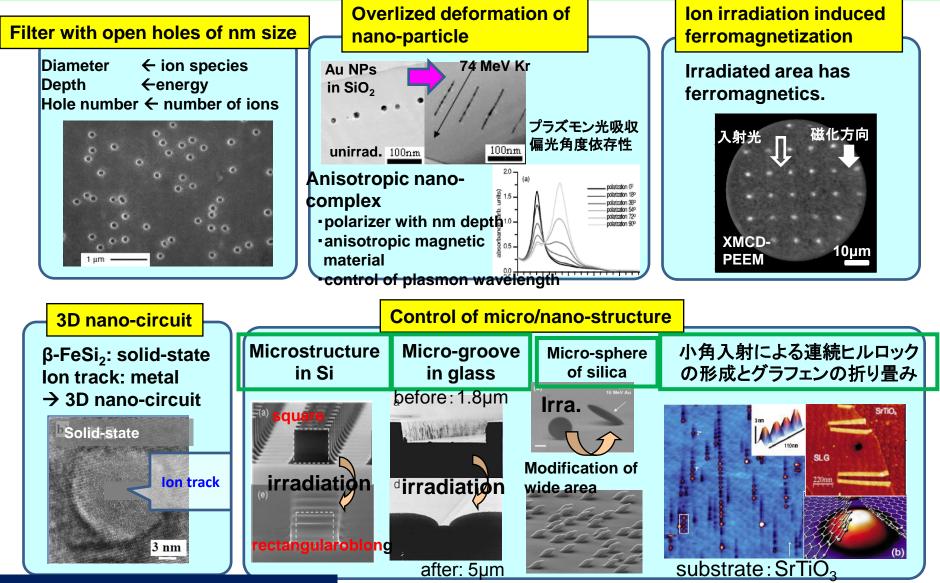
1


¹ C	20 min
ЗN	10 min
⁵ O	2 min
⁸ F	110 min

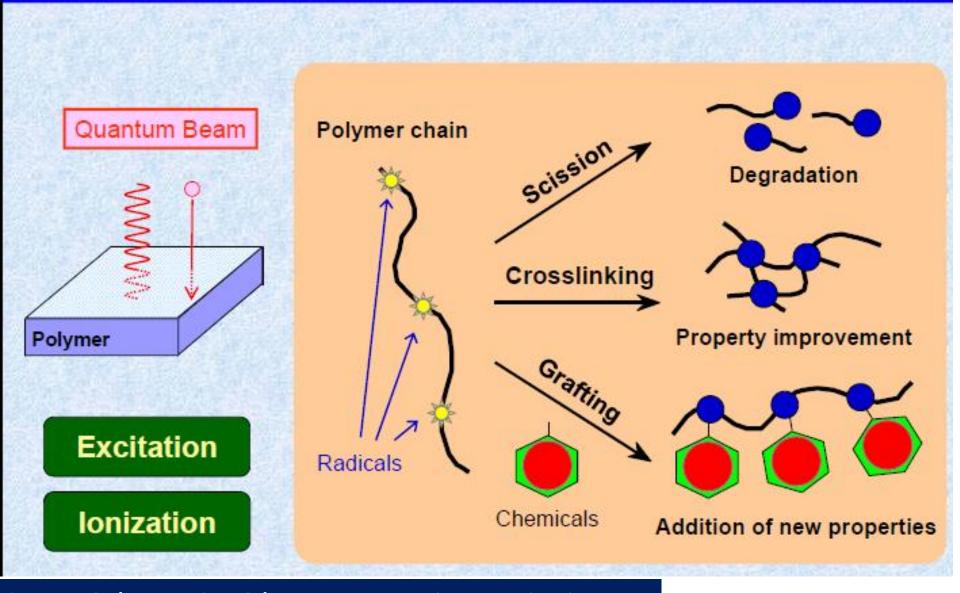
by Ting Shien Duh at AFAD2015

Maybe, Accelerator research institutes have nothing to do, because Cyclotron industry in the world is well matured.


Compact AVF cyclotrons lineup


by Tsutsui (Sumitomo Heavy Industry) at KEK-NM Accelerator School in 2014

Modification of Bulk Materials


Materials with Novel Function

- ·Creation of lon track of nm size in diameter by a single swift heavy ion
- realization of non-equilibrium phase due to electron excitation of several tens of keV/nm


by H. Amekura (NIMS in Japan)

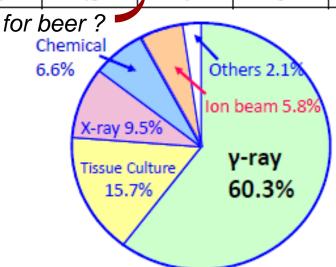
Polymer

by Yamaki (JAEA-Takasaki) at KEK-NM Accelerator School in 2014

Control of Ion Track

by Yamaki (JAEA-Takasaki) at KEK-NM Accelerator School in 2014 "LET-dependent" track etching allowed to control the pore shape

Mutant Variety Database


understandable

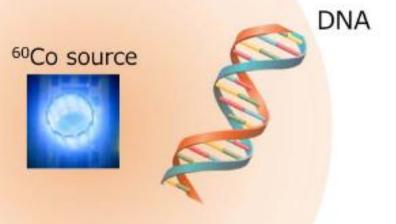
understandable

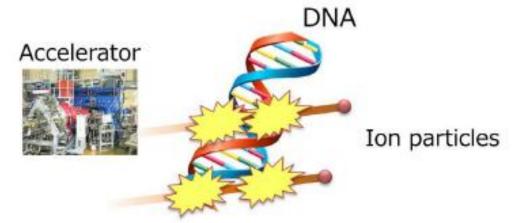
(FAO/IAEA Database, October 2011)

Country	No. of cv. Total	Rice	Barley	Wheat	Maize	Soybean	Chrysanthemum
All countries	3212	815	304	252	89	170	277
China	808	290	7	162	47	79	21
Japan	481	222	10	7	0	30	56
India	329	59	13	4	0	7	46
Russia	215	6	29	36	5	9	17
Netherland	176	0	1	0	0	0	80
Germany	171	0	66	2	0	1	34
USA	139	36	13	4	0	0	1

Bangladesh	44
Indonesia	29
Korea	35
Pakistan	53
Thailand	20
Viet Nam	55

More than half varieties with ion beams created by using TIARA


Mutagen	
(Japan)	


H. Nakagawa, TechnoInnovation No.68(2007)

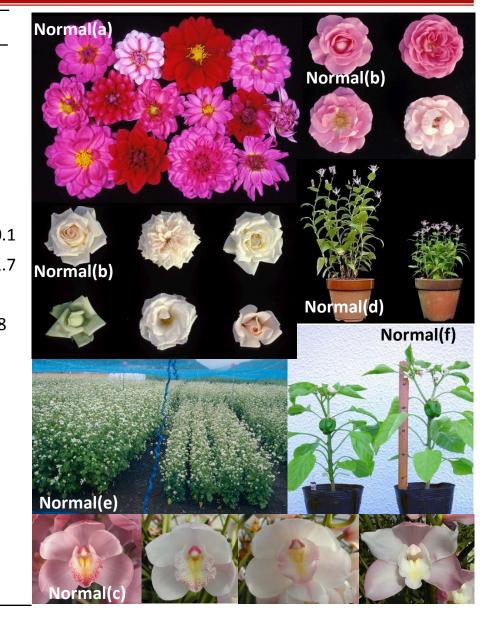
Energy deposition: Gamma-rays vs Ion Beams

Produce ionization sparsely along their track (Low-LET radiation)

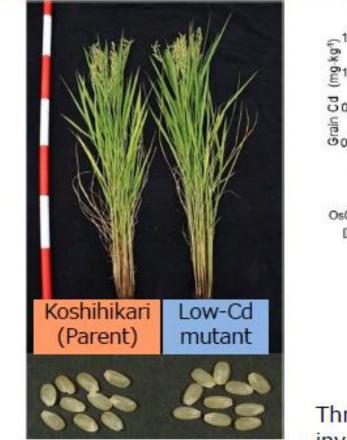
LET: ~0.2 keV/µm

Produce dense ionization along the track of ion particles (High-LET radiation)

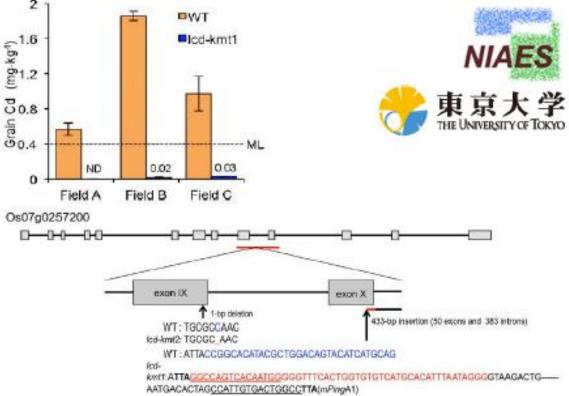
LET: 1 ~ 2,000 keV/µm


Does the ion beam induce different mutation?

by Hase (JAEA-Takasaki) at KEK-NM Accelerator School in 2014


Mutants developed from the RIKEN beam

Mutant phenotype	Plant material	Mutation rate (%)	
Sterile			
Verbena	Stem		09-2.8
Cyclamen	Tuber		6.7
Eucalyptus Shoot	primordia	9.3	
Color and shape			
Petunia	Ovary		1.0
Dahlia ^a	shoot		20.3-50.1
Rose ^b	Dormant so	cion	43.1-51.7
Chrysanthemum	Stem		4.5-14
Torenia	Leaf and st	em	1.6-18.8
Orchid ^c	shoot		5.0-6.3
Variegation			
Petunia Hybrida	Stem		1.8
Dwarf			
Tricyrtis hirta ^d	Embryoger	ic callus	10.8
Millet	Dry seed		0.1
Buckwheat ^e Dry see	ed	0.6	
Pepper ^f	Dry seed		1.3



by HYoshida (RIKEN) at JAAWS2010

Mutation Breeding of Crop Plant

~3,000 M2 plants derived from ~3,000 M1 seeds irradiated with 40 Gy of carbon ions were screened.

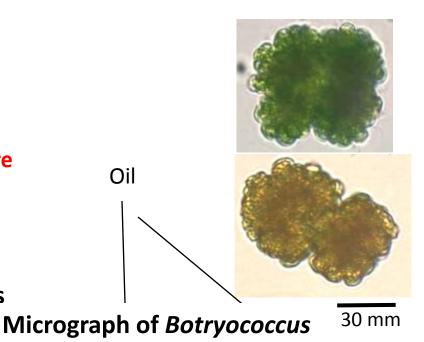
Three independent mutants on the OsNRAMP5 gene involved in Manganese transport

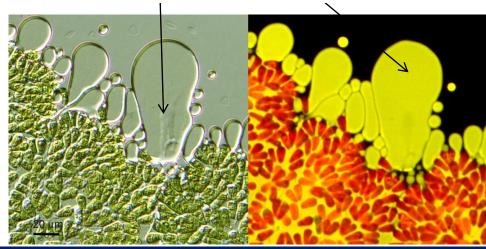
lcd-kmt11-bp deletionlcd-kmt2Transposon(mPing) insertionlcd-kmt3227-kb deletion

Ishikawa S. et al., PNAS 2012

by curtesy of Hase (JAEA-Takasaki) at KEK-NM Accelerator School in 2014

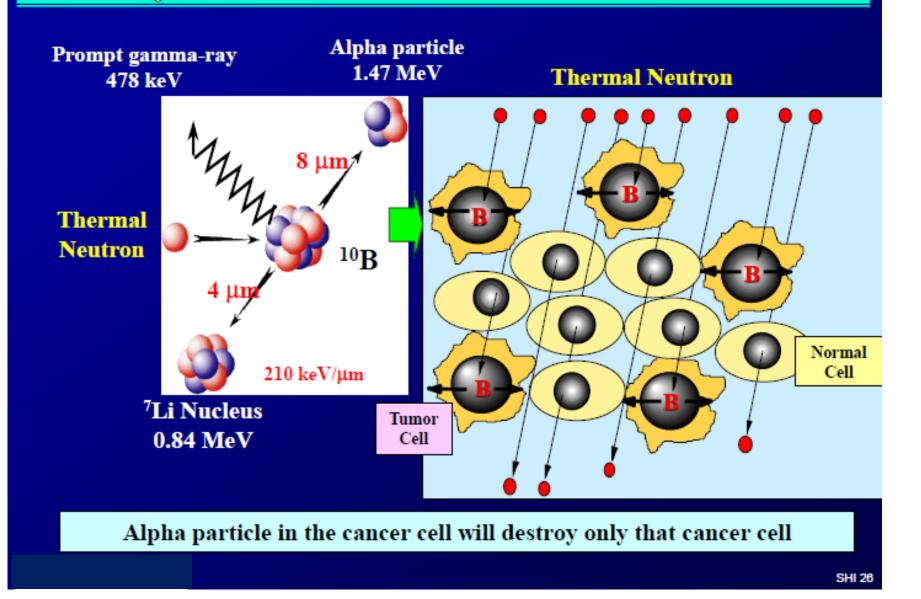
Mutation of Microorganism Botryococcus (autotrophic alga) creating Oil as a result of photosynthesis


- Colonial green algae live in fresh water
- Green to Brown, Size: 30-500 μm
- The oil of *B. braunii* is hydrocarbon (→ petroleum)
- Oil is secreted out of a cell under some pressure
- Oil contents: 30-75% (dry weight)


Two problems to prevent industrialization:

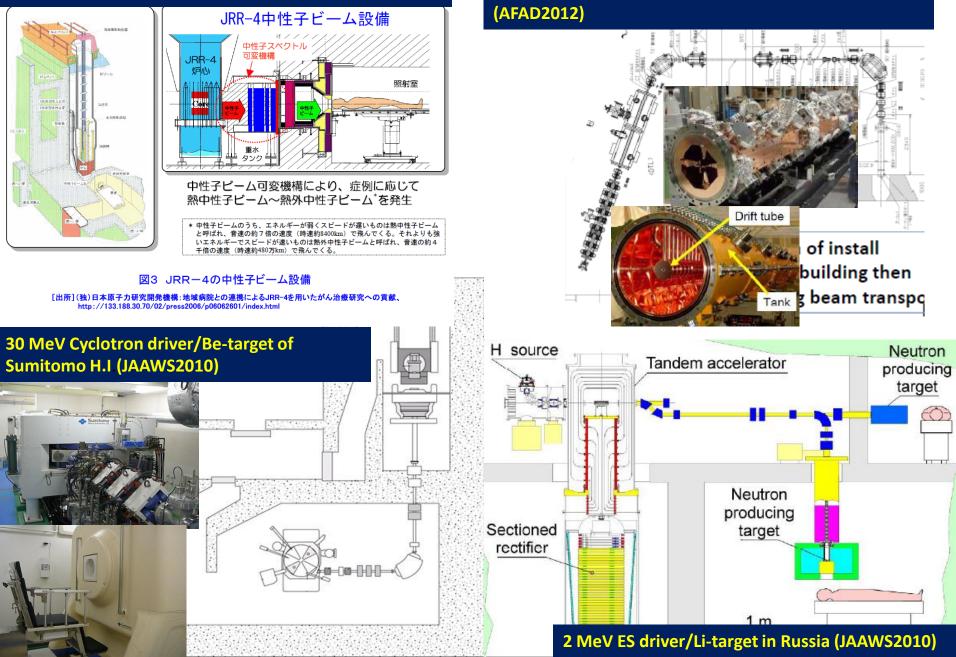
- (1) Growth is very slow
- (2) Capability of hydrocarbon production is
- not enough
- Gene transfer technique is not established.

Possibility of Gene Modification by quantum beams



by courtesy of Prof. Suzuki (Univ. Of Tsukuba) (AFAD2014)

BNCT Principle



by Tsutsui (Sumitomo Heavy Industry) at KEK-NM Accelerator School in 2014

Variation of Proton Driver for BNCT (Boron Neutron Capture Therapy)

8 MeV Linac driver/Be-target at Ibaraki in Japan

Conventional fission reactor base BNCT at JAEA