Electron sources at ATF/LUCX facility of KEK

N. Terunuma, KEK, Japan

Indo-Japan School on Advance Accelerators for lons and Electrons Inter University Accelerator Centre, New Delhi

16 February 2015

Two lectures about the electron source

The Cs₂Te RF gun developed at KEK will be delivered IUAC in 2015 for the FEL project.

I would like to focus my lectures on developments and experiences of the Cs_2 Te RF gun at KEK.

Part-I

Development of Cs₂Te RF gun

Part-II (afternoon)

• Experiences of Cs₂Te photocathode at KEK

Part-I Development of Cs₂Te photocathode RF gun

- Introduction; KEK electron accelerators and gun
- Development of the Cs₂Te RF gun
- Experiences of the Cs₂Te photocathode under beam operation

Electron sources of the KEK Accelerators

Cs₂Te photocathode RF gun

- well established
- compact and long lifetime

STF

L-band 1.3 GHz

ATF and LUCX S-band 2.8 GHz

cERL (500kV DC gun for CW beam) GaAs photocathode

KEKB

Thermionic Gun

SuperKEKB

Quasi traveling wave side coupled cavity gun advanced, still being developed

Electron sources at KEK

Two specials electron guns (not Cs₂Te)

- SuperKEKB
- cERL (Compact Energy Recovery Linac)

SuperKEKB: electron-positron collider for High Energy Physics

- CP violation, flavor physics, ...
- SuperKEKB is an upgrade of KEKB to increase the luminosity (x40), to 8 x 10 ³⁵ cm ⁻² s ⁻¹. The construction started in 2010 and will have the first beam in 2016 or so.

Electron source of SuperKEKB

High charge low emittance electron and positron beams are required for SuperKEKB.

Aiming to generate 7.0 GeV electron beam at 5 nC 20 mm-mrad

Table 1 : e- and e+ beam parameter				
	KEKB	SuperKEKB		
	(e+/e-)	(e+/e-)		
charge [nC]	1 / 1	4/5		
Emittance	2100 / 300	6 / 20		
[mm-mrad]				

T. Natsui et al., proceedings of IPAC 2013, TUOCB103

Advanced S-band RF gun for high charge low emittance electron beam

- Disk and Washer (DAW) type RF gun was tested.
- another new RF gun is under developing and testing.

quasi traveling wave side couple RF gun

- a strong focusing field at the cathode
- acceleration field distribution also has a focusing effect.
- Cathode: Ir₅Ce

Compact Energy Recovery Linac (cERL)

R&D accelerator for the future 3 GeV ERL

Target: 35 MeV, 10 mA (100 mA in future?)

Superconducting Main Cavity (Acceleration and Energy Recovery)

[†] Superconducting Injector Cavity

500 kV DC gun

CRey.Hori / KEK

Electron source of cERL

500 kV DC Gun (by JAEA)

Aiming to develop **Highbrightness, high-current electron beam** for ERL

CW operation \rightarrow DC gun

500 keV e⁻ beam

 reduce space-charge induced emittance growth

GaAs photocathode

- Lifetime is an issue.
- R&D for multi-alkaline cathode

Beam achieved:

- 1.8 mA, 500 keV
- 10 mA, 180 keV

KEK accelerators with Cs₂Te photocathode RF gun

STF
ATF
LUCX

What are the ATF and STF?

They are Accelerator Test Facilities aim to develop and establish the technologies for ILC

STF: Superconducting RF Test Facility

Aiming at establishment and industrialization of a superconducting acceleration system that is indispensable for the ILC (International Linear Collider).

9-cell Nd superconducting cavity

Electron source of STF

STF: Superconducting RF Test Facility

L-band RF Gun (FNAL,KEK) Cs₂Te Photocathode

ILC 9-cell superconducting cavity

electron beam (2012 example)

- 30 ~ 40 pC/bunch
- 162,450 bunches (1 ms)
- 3.5 MeV
- RF power 2.6 MW (37.5 MV/m on cathode)

ATF: Accelerator Test Facility

establish the technique for small beam and its stabilization Goal beam size: 37 nm in vertical

Damping Ring (~140m) Low emittance electron beam

Cs₂Te Photocathode RF Gun

1.3 GeV S-band Electron LINAC (~70m)

Electron source of ATF

RF gun: S-band 3.6 cell

Typical operation for ATF

- **5 MeV** (limited by available RF power)
- 1x10¹⁰ electrons/bunch
- 1~20 bunch/pulse (2.8 ns spacing)
- 3 Hz repetition

Laser

- Nd:YVO₄: 1024 → 266 nm
- 357 MHz
- 2 uJ/bunch
- 1~20 bunch by pockels cell

Cathode

Cs₂Te: QE ~1%

1.3 GeV S-band Electron LINAC (~70m)

One more Test Facility

LUCX: Laser Undulator Compact X-ray source

Constructed in ATF building, KEK.

Aim to develop the technologies for the compact X-ray source and imaging.

Develop an usable intense X-ray source (10~100keV) in a room scale by using **Inverse Compton scattering (ICS)**; i.e., laser and electrons.

GeV ring + Undulator

- High intensity, High quality
- Huge and Expensive

Inverse Compton scattering (ICS)

• Compact, Inexpensive

LUCX and ATF electron source: 3.6-cell RF gun

 Frequency (π -mode)
 2856 MHz

 Qvalue
 15000

 Coupling B
 0.99

 R/Q
 395 Ω

 Mode separation (π -2 π /3)
 2.8 MHz

LUCX Laser for Cs₂Te photocathode

Example; Performance of LUCX RF gun

RF gun: S-band 3.6 cell

- RF input: 12 MW
- beam energy: 10 MeV
- 600 nC/pulse, 1000 bunch/pulse
- 380 nC/pulse, 300 bunch/pulse

Laser

- Nd:YVO₄: 266 nm, 357 MHz
- 10 uJ/bunch
- 100 ~ 1000 bunch/pulse by pockels cell, 3 Hz laser pulse

Cathode

• Cs₂Te: QE ~0.3%

Development of Cs₂Te RF gun at KEK

 Motivation of Cs₂Te RF gun for ATF
 Configuration of RF gun and laser in the ATF Injector system

Motivation of Cs₂Te RF gun for ATF

ATF had been started the Damping Ring for the R&D of multi-bunch beam for LC since 1996.

The beam intensity was limited $\sim 1/10$ because of the beam loss of the injected beam.

required: 2x10¹⁰ e⁻/bunch, realized: 2x10⁹ e⁻/bunch

ATF Injector: Thermionic gun and bunchers Large tail, energy jitter, ... → beam loss at LINAC to Damping Ring

Improve the beam quality: thermionic gun \rightarrow RF gun. required intensity: Cs2Te

 $1 \times 10^{10} e^{-} \sim 1\%(Q.E.) \times 1mJ(Laser)$ Higher QE photocathode ~1% \rightarrow Cs₂Te

KEK Accelerator Test Facility (ATF and LUCX)

Installation of RF gun at ATF Injector in 2002

Result of RF gun application to ATF

- 1 ~ 20 bunches/pulse(train) with 2.8ns spacing
- ~ 2 x 10¹⁰ electrons / bunch

Injection efficiency from Linac to DR: 60 % → ~100 %

Change of the laser injection angle, in 2003

Aim to improve the emittance due to the non-uniform space charge effect by sliced transverse laser-profile on the cathode; usually laser is not an ideal gaussian.

Install Chicane for Laser Injection in 2007

In-vacuum mirrors

- narrow aperture for e- beam (gap 10 mm)
- alignment of laser

Damage of mirrors was found during the chicane installation in 2007

Mirrors: (10mm gap)

for the laser injection and the monitoring of hit position on surface Damage: charge or heat by miss-steered beams, dark current.

Configuration of the ATF 80 MeV Injector

Example: Performance of Cs2Te RF gun at 80 MeV ATF Injector

1.6 Cell S-band RF Gun, ATF, 2009

Example: Performance of Cs2Te RF gun at 80 MeV ATF Injector

1.6 Cell S-band RF Gun, ATF, 2009

Development of Cs₂Te RF gun at KEK

Improvements over 10 years

(1) Y2002: Plugged photocathode in vacuum

Original Gun (BNL type4)

- endplate is a cathode
- re-mountable as a flange

Modified Gun for Cs2Te

 cathode load-lock mechanism in vacuum

How the photocathode attached on the RF gun? Example: First Cs₂Te RF Gun at KEK

How the photocathode attached on the RF gun?

Scar of Contactor

Backside of End-plate

Cathode plug on the load-lock

End-plate with Cathode plug

Cathode plug on the load-lock, GV removed

ATF Cs2Te photocathode preparation and load-lock system

(2) Y2007: Braze the half-cell endplate

Original Gun (BNL type4)

- endplate is a cathode
- re-mountable as a helicoflex flange
- fastening vs., tune control

Modified Gun for Cs2Te

- no needs to remount the endplate
- cathode load-lock mechanism

Brazing the endplate

- reduce the risk of a field emission at corner
- expect an increase of Q

(3) Y2007: No-gap tuner for freq. adjustment

Conventional Tuner

- gap between rod and cavity wall
- suspected to be a source of discharge

New Compact Tuner

- No gap
- Plastic deformation of the cavity wall
- expect an increase of Q
- 220 kHz/tuner, 4 tuner x 2 cells

(4) Y2008: RF gun for normal laser injection

Remove the ports on the half cell for slant laser injection

- only accept the normal incidence of a laser on the cathode
- simplified half-cell cavity
- expect an increase of Q

(5) Y2009: Mode Separated RF gun

- RF gun for high charge, low emittance multi-bunch beam is demanded for LUCX experiments.
- Mode separated RF gun for LUCX, have been developed with a separation of 8.6 MHz as against 3.5 MHz of original cavity.
- By increasing the separation, the minimum of emittance and energy spread is more stable over phase variations.
- LCLS (SLAC) changed the mode separation from 4 MHz to 15 MHz and LLNL also shifted to 12 MHz.

Mode Separated RF gun - continued -

(6) Y2010: Mode separated 3.6-cell RF gun

 Frequency (π-mode)
 2856 MHz

 Qvalue
 15000

 Coupling β
 0.99

 R/Q
 395Ω

 Mode separation (π-2π/3)
 2.8 MHz

1.6-cell mode separated

This gun generates the electron beam with the energy of **10MeV**.

Newest design: 2.6-cell RF gun for IUAC

3.6-cell mode separated RF gun

- aimed to get 12 MeV e- beam
- RF breakdown limit the input power
- low field on cathode
- 9 MeV e- beam was achieved

2.6-cell mode separated

- much better field gradient at cathode
- expect better beam quality,

History of Cs₂Te RF guns by KEK

Improvements	Results	ATF	LUCX	prepared for
(Demonstration of BNL type-IV at ATF)	low intensity by Cu cathode	(2001)		
Cs2Te cathode plug attachment	Q ~7,900 RF 9 MW 3 nC/bunch	2002	2004	
Half-cell brazing, Screw tunner	Q ~12,200 RF ~12 MW			2007 Waseda Univ.
Removed Laser Ports	Q ~13,500	2008		2007 Kyoto 2008 Osaka 2009 AIST
Mode separated 3.5 → 8.6 MHz	Q ~14,700		2009	
1.6 Cell → 3.6 Cell	10 MeV	2010	2011	
(2.6 Cell)				(2015 IUAC)

Some results of Cs₂Te photocathode by beam operation

Details are not shown here but in Part-II

Two months history of the quantum efficiency under the ATF operation

Cathode surface after long-term operation

- A lot of small spots were observed.
- They were scattered over the plug surface.
- somehow much on the Cs₂Te area (??)
- ~1% of QE was confirmed with these spots
- We are not sure that spots are due to Cs₂Te because we have no longterm sample without Cs₂Te.

Dark Current with Cs₂Te photocathode

- Dark current was increased 30% with Cs₂Te. (when the Cs₂Te was prepared)
- 8 months later, more dark current was observed; i.e., 60% of without Cs₂Te,
- but it was not clear due to Cs₂Te. Gun itself?
- Gun operated (4 months)
 - 12.5 Hz, 9 MW
 - RF pulse 2.5 usec
 - 1.1 nC/bunch

Summary

 RF guns with Cs₂Te photocathode are used at ATF, LUCX and STF accelerators.

 Well established with more than 10 years experiences.

Cs2Te worked well with a long-enough lifetime.
 Details about the Cs₂Te photocathode will be shown in next session