KEK: LUCX - THZ PROGRAM: OVERVIEW AND PROSPECTS

Alexander S. Aryshev, Ph.D.

Research Physicist KEK: High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba 305-0801, Ibaraki-ken, Japan. TEL: +81-298-64-5715, FAX: +81-298-64-0321. e-mail: alar@post.kek.jp KEK PhS: 4885

Indo-Japan school on Advanced Accelerators of Ions and Electrons

16 February 2015

Outline

- LUCX THz general
 - General motivation(s)
 - THz project overview
 - LUCX activity, LUCX Projects Overview, THz program
- FSTB: Sub-TW, Ti:Sa Laser system
- Laser Transport Line (LTL)
- fs electron beam: generation, measurement and control
- LUCX THz: measurement setup, DAQ & Soft
- Conclusion, Plans, Schedule

General motivation

LUCX accelerator tunnel

Nd:YAG KLY#0

FSTB

Modulator #0

LUCX control room

KLY#1

Modulator #1

16 February 2015

LUCX beamline and operation modes

"Femtosecond mode"

- Ti:Sa laser
- e-bunch rms length ~100fs
- e-bunch charge < 100pC
- Single bunch train, Micro-bunching 4-16
- Rep. rate 10 Hz
- Experiments: THz program

"Picosecond mode"

- Q-switch Nd:YAG laser
- e-bunch rms length ~10ps
- e-bunch charge < 0.5 nC
- Multi-bunch train 2- few 10³
- Rep. rate 12.5 Hz
- Experiments: Compton, CDR

THz program key points

Laser system

- Stable operation and diagnostics
- Generation of Ti:Sa 3rd harmonic (265nm) fs laser beam
- Pointing, energy, mode stability @ 265nm
 - Micro-bunching

Accelerator

- Generation of fs, comb electron beam
- Ability to measure longitudinal beam profile
- Vacuum chamber with multi-axis manipulator system
- Machine stability

THz Measurement system

- Reliable measurements of THz radiation spectrum and angular distribution.
- Radiation intensity, Pulse duration, Shot-to-shot and Long-term stabilities.

FSTB: SUB-TW, TI:SA LASER SYSTEM & LASER TRANSPORT LINE (LTL)

Nothing but ultraftst.

Ti:Sa laser system (FSTB)

to Nd:YAG

Factory test results

Repetition rate, max	10Hz
Central wavelength	795nm
Pulse energy before compression	22mJ
Pulse energy after compression	14mJ
Pulse duration w/w-o correction	30/37.7fs
Energy stability 22mJ@800nm	1.6%

16 February 2015

FSTB: General approach

- Integrated laser system with wide tuning ranges:
 - Number of microbunches
 - Microbunch spacing
 - Duration(s), Intensity, position, size.
- On-line monitoring and control
- Feedback (Accelerator <-> Laser) (yet to be tested)
- Long term stability
- In-house expertise

Laser system: general layout

Laser system: fs Single Shot autocorrelator

The method based on the registration of cross distribution of Second Harmonic (SH) energy produced in nonlinear crystal under non-collinear interaction of two beams with determined aperture is used.

Cross size of SH beam:

$$D_z = \frac{tc}{\sin\frac{q}{2}}$$

t – pulse duration, φ – the angle between the combined beams in the crystal, c – light velocity of the base frequency in the crystal.

Time delay Δt causes the SH cross distribution to shift by an amount of Z_0 :

$$Z_0 = \frac{\Delta tc}{2sin\frac{\varphi}{2}}$$

From the above expressions the pulse duration:

$$=\frac{D_z\Delta t}{Z_0}$$

Indo-Japan school on Advanced Accelerators of Ions and Electrons

11

Laser system: fs Single Shot Autocorrelator

Estimated pulse width Sech2 pulse t/1.5426

34.8 fs

16 February 2015

Accelerators of Ions and Electrons

LASER PULSE SPLITTING AND THG

THG: Improvement of the current (collinear) scheme

Frequency tripling is a process of a nonlinear frequency conversion.

THG (setup)

THG: Possible improvement

Collinear scheme

 Replace Calcite plate with BBO: θ = 70.0deg, ψ[~]
 90deg, L= 4mm according to H. Enqvist, Lund Reports on Atomic Physics, LRAP-330, Lund,
 October 2004

Better matching and focusing optimization.

- Non-collinear scheme
 - More complicated alignment.
 - Lower energy conversion threshold.

Ti:Sa 3rd harmonic generation

16 February 2015

Non-collinear scheme

- C. Radzewicz, Optics communications 117 (1995) 295-302.
- Lixin YAN, Preliminary
 Experiments on
 Ultrashort Bunch Train
 Production by UV Pulse
 Stacking, Tsinghua
 University

Non-collinear scheme

LUCX LTL

LUCX LTL, Box#1

UV telescope

LUCX LTL, Box#2

FSTB & LTL measurements

16 February 2015

Performance

Performance	Measured	Specified
Repetition rate	10 Hz	10 Hz
Central wavelength	805 nm	795 – 815 nm
Pulse energy before compression	u 22 mJ	> 20 mJ
Pulse energy after compression	16 mJ	> 12 mJ
Pulse duration without dazzler: with dazzler: Energy stability 22 mJ at 800 nm	39 fs 37 fs 1.4 %	< 40 fs < 30 fs < 2 %
Contrast ns	1x	< 1x
16 February 2015 Acc	do-Japan school on Advanced elerators of Ions and Electrons	24

FSTB: 2/4 – micro bunch mode

Location

- After THG (UV, fs, spot)
- After compressor (FH, fs, spot, energy)
- After main amp.(FH, ps, energy)
- After pre-amp.(FH, ps)

Туре

- Crystals
- no bunch separation control.
- no easy number of bunches control.
- Interferometer
 - more difficult to tune

Handling

- Tuning
- Motorization possibility
- Compact design
- Same polarizations
- Low losses

Tsinghua University system

y x = zx = z

16 February 2015

Pulse stacker

- Both approaches gives alternative polarizations within train, what is a problem if buncher will be placed before 3rd harmonic generator.
- What is Cs₂Te light polarization response?
- Points to check: stability, pulse duration broadening.

16 February 2015

Indo-Japan school on Advanced Accelerators of Ions and Electrons

28

Buncher

"Buncher" performance tests

~ 0.85 uJ each

"straight arm"

16 February 2015

Limitations

- Now we have a trade between amplification (of each micro bunch) and path.
- Somewhat it is coming from not optimized design.
- The most important notice is that pulse durations appears to be different (due to path: angle-position difference through the compressor).
- In order to obtain similar energy for each bunch at the cathode we have misbalanced FH energies.
- We are sure that if 4-, 8- and even 16- bunches are possible to make on this scheme.

FS ELECTRON BEAM: GENERATION, MEASUREMENT AND CONTROL

LUCX beamline

fs e-beam generation

UV

e-beam

16 February 2015

Two micro-bunch mode

.icxopr/run/data_archive/14_07_25_2bunch_electron_beam/02_ms3g_kly_0deg_arm_moving_2/02_ms3g_kly_0deg_arm_moving_20140725_1942

Four micro-bunch mode

fs e-beam: generation, measurement and control Conclusion & Plans

• e-beam

- reliable beam generation with repeatable beam condition is achieved.
- Beam tuning still needed (BBA, emittance compensation optimization, energy spread, bunch length).
- Bunch length measurements through THz spectrum has to be done in nearest future.
- Laser system
 - "buncher" system is now under upgrade

CONCLUSION, PLANS, SCHEDULE

Schedule & Conclusion

- Work in every direction is ongoing
- FSTB
 - startup: from 22 August 2012
 - Minimum integration & THG from March 2014
 - Non-collinear THG
 - LTL remote diagnostics and control
 - Complete FSTB soft integration
- THz chamber & 5D manipulator
 - Installed December 2013
- LUCX diagnostics
 - BPMs, ICT, OTR were checked
 - Beam tuning still needed (BBA, emittance compensation optimization, energy spread, bunch length).
 - Bunch length measurements through THz spectrum has to be done in nearest future.
 - Machine stability has to be improved
- Measurement setup, DAQ & Soft
 - QOD and SBD were checked
 - The Michelson interferometer was commissioned
 - Q.E. analysis soft
 - Beam jitter analysis soft

THANK YOU FOR YOUR ATTENTION