

EDITORIAL BOARD

Dr. P.N. Prakash

Dr. S. Chopra

Dr. D. Kabiraj

Dr. C.P. Safvan

Dr. S. Nath

Mrs. P. Nayak

Hindi Translation
Dr. Megha Acharya
Ms. Deeksha Khandelwal

Student Representative

Mr. Aditya Kumar

Published by:

Inter-University Accelerator Centre, New Delhi

Layout & Printed by:

B. M. Offset Printers, Noida

For comments/ suggestion, please write to:

priya@iuac.res.in

Available online at:

www.iuac.res.in/annual-report

CONTENTS

S.No.		CHAPTER PARTICULARS		Page No	
1.	AC	CCELERATOR			
	1.1	15 UD	PELLETRON ACCELERATOR	1	
		1.1.1	Operational Summery	1	
		1.1.2	Maintenance	2	
		1.1.3	Breakdown Maintenance (September 2021)	2	
		1.1.4	Scheduled Maintenance (March 2022)	3	
		1.1.5	Ion Source activities	3	
	1.2	SUPE	RCONDUCTING LINEAR ACCELERATOR (SC LINAC)	5	
		1.2.1	Operation of the superconducting linac	5	
		1.2.2	Superconducting Resonator Fabrication (SRF)	5	
		1.2.3	Automation of Q curve measurements for superconducting resonators	6	
	1.3		AS: 1.7 MV (5SDH-2) PELLETRON ACCELERATOR BA BEAM ANALYSIS FACILITY	ASED 6	
		1.3.1	Operation	6	
		1.3.2	Maintenance	7	
		1.3.2.1	Ion Source Maintenance	7	
		1.3.2.2	The 5SDH-2 Pelletron Accelerator and End-station Maintenance	7	
	1.4	AMS	AND GEOCHRONOLOGY FACILITIES	7	
		1.4.1	Accelerator Mass Spectrometry	7	
		1.4.1.1.	Graphitization Laboratory	7	
		1.4.1.2	Clean Chemistry lab for ¹⁰ Be and ²⁶ Al Sample Preparation	8	
		1.4.1.3	XCAMS facility	8	
		1.4.2	National Geochronology Facility	9	
		1.4.2.1	High Resolution Secondary Ion Mass Spectrometer (HR-SIMS)	9	
		1.4.2.2	Femto second Laser Ablated High Resolution Inductively Coupled Plasma S ₁ (LA-HR-ICP-MS)	pectrometry 11	
		1.4.2.3	Quadrupole- Inductively Coupled Plasma Spectrometry (Q-ICPMS)	11	
		1.4.2.4	Field Emission—Scanning Electron Microscope (FE-SEM)	11	

		1.4.2.5	Wavelength dispersive X-rays fluorescence spectrometer (WD-XRF)	12
		1.4.2.6	X-Ray Diffractometer (XRD)	13
		1.4.2.7	Laboratory magnetic barrier separator	13
		1.4.2.8	Jaw Crusher, Vibratory disc mill and Sieve shaker	13
	1.5	LOW	ENERGY ION BEAM FACILITY (LEIBF)	14
		1.5.1	Operation	14
		1.5.2	Maintenance	14
		1.5.3	In-house research activities	15
	1.6	LOW	ENERGY NEGATIVE ION IMPLANTER FACILITY	15
2.	AC	CELER	ATOR AUGMENTATION	
	2.1	HIGH	CURRENTINJECTOR	19
		2.1.1	Introduction	19
		2.1.2	ECR ion source	19
		2.1.3	Multi-harmonic buncher (MHB)	23
		2.1.4	Radio frequency quadrupole	23
		2.1.5	Spiral buncher (SB)	24
		2.1.6	Drift tube linear accelerators and associated diagnostics	25
		2.1.7	Conclusion	27
	2.2		US OF THE COMMISSIONING AND TESTING OF COMPACT RADIATION FACILITY BASED ON FREE ELECTRON LASER	27
		2.2.1	Introduction	27
		2.2.2	Progress of Various Subsystems of Dls	27
		2.2.2.1.	High power RF conditioning of the electron gun and production of electron beam	28
		2.2.2.2	Analysis and Simulation studies of dark current and detected electron beam	28
		2.2.2.3	Status of the Photocathode Deposition System at IUAC	29
		2.2.2.4	Status of the Undulator	29
		2.2.2.5	Commissioning status of the beam line	30
		2.2.2.6	Testing and calibration of strip line Beam Profile Monitors and associated electronics	30
		2.2.2.7	Setting up new control room for the FEL facility	31
		2.2.2.8	Simulation studies for production of THz radiation	31
		2.2.3	Conclusion	32
3.	RES	SEARC	H SUPPORT FACILITIES	
	3.1	SUPP	ORT LABORATORY	33
		3.1.1	High vacuum Laboratory	33

		3.1.2.	Cryogenics and Applied Superconductivity	31
		3.1.3	Beam Transport System (BTS):	41
		3.1.4	Detector Laboratory	43
		3.1.5	Target Laboratory	46
		3.1.6	Radio Frequency Amplifier Laboratory	48
		3.1.7	Health Physics Laboratory	51
		3.1.8	Data Support Lab (Nias-daq Group)	53
		3.1.9	Computer and Communications	57
		3.1.10	Electronics for Cryogenics, Ifr & Mri	59
		3.1.11	Low Level RF & Beam Bunching Group (LLRF)	64
		3.1.12	Ion Source Group	67
		3.1.13	Remote Control Laboratory	69
	3.2	UTIL	JITY SYSTEMS	71
	3.2.1	Electric	cal Group Activities	71
	3.2.2	Air Cor	nditioning, Water System, Cooling Equipments, Compressed Air System, Fire Hydrant System	73
	3.2.3	Mecha	nical Workshop And Ancillaries	74
	3.2.4	Civil E	ngineering Group	77
4.	EXP	ERIM	IENTAL FACILITIES IN BEAM HALL	
	4.1	SCAT	TTERING CHAMBER AND NEUTRON ARRAY	78
		4.1.1	Operation and maintenance activities	78
		4.1.2	User experiments in GPSC and NAND	78
		4.1.3	Simulation of neutron scattering by materials in NAND	7 9
	4.2	GÂM	IMADETECTOR ARRAYS: GDA and INGA	79
		4.2.1	User experiments	7 9
		4.2.2	Servicing of Clover detectors	80
		4.2.3	VME data acquisition system in INGA	80
		4.2.4	Clover enhancer module	80
	4.3	REC	OIL MASS SPECTROMETERS	80
		4.3.1	Heavy Ion Reaction Analyzer (HIRA)	80
		4.3.2	HYbrid Recoil mass Analyzer (HYRA)	81
	4.4.	MAT	ERIALS SCIENCE FACILITIES	81
		4.4.1.	Irradiation chamber in Beam Hall I	82
		4.4.2.	Materials Synthesis and Microscopy laboratory	83
		4.4.3.	Transport Lab	84

		4.4.4. 4.4.5.	High-Resolution Transmission Electron Microscopy (HRTEM) Lab Activities Structure and Spectroscopy Lab	84 89
	4.5	RADI	IATION BIOLOGY	90
	4.6	ATON	MICAND MOLECULAR PHYSICS	91
		4.6.1	Status of vacuum chamber at 75° beam line in LEIBF	91
		4.6.2	Status of general purpose atomic physics vacuum chamber (GPAC) at beam hall-II	91
		4.6.3	Status of Electro Static Analyzer (ESA) for post foil charge state measurements at beam hall-II	92
5.	RES	EARC	CHACTIVITIES	
	5.1	NUCI	LEAR PHYSICS	93
		5.1.1	Study of completely mass symmetric fusion-evaporation reaction at various energies	94
		5.1.2 5.1.3	Low-lying electromagnetic properties of Zn-isotopes studied with Coulomb excitation Fission fragment mass angle correlations for the reaction ²⁸ Si + ¹⁶⁰ Gd populating ¹⁸⁸ Pt	95
		3.1.5	compound system	96
		5.1.4	High-spin spectroscopy in ²⁰⁷ At	97
		5.1.5	High-spin states in ^{216,217} Ra	98
		5.1.6	Mass-gated pre-scission neutron multiplicity measurements for ¹² C+ ²³⁸ U	100
		5.1.7	Fusion measurements for ^{30,28} Si+ ^{156,158} Gd systems around the Coulomb barrier	101
		5.1.8	Fission time scale measurements around mass ~200 region	102
		5.1.9	Few-nucleon transfer and fusion dynamics around the Coulomb barrier	
			for ²⁸ Si+ ^{116,120,124} Sn systems	103
		5.1.10	Multi-nucleon transfer and fusion studies for ¹⁶ O+ ^{107,109} Ag reactions	104
		5.1.11	Lifetime measurement in ¹⁰⁴ Cd using plunger device	105
		5.1.12	Study of entrance channel effect on the fusion-fission dynamics via light	
			particle multiplicities	105
		5.1.13	Average neutron multiplicity measurements for ³² S+ ^{194,198} Pt systems with energy ranging from 203 – 173 MeV	107
		5.1.14	Mass-gated pre-scission neutron multiplicity measurements in ¹⁹ F+ ²⁰⁸ Pb	107
		5.1.14	around the Coulomb barrier	108
		5.1.15	Mass-gated pre-scission neutron multiplicity measurements for ²⁸ Si+ ²³⁸ U	108
		5.1.16	Spectroscopic study of ⁴⁰ K	109
		5.1.17	Evaporation residue cross section measurements for ³⁰ Si+ ¹⁷⁶ Yb and	107
		3.1.17	¹⁹ F+ ¹⁸⁷ Re reactions	110
	5.2	MAT	ERIALS SCIENCE	112
		5.2.1	Gamma irradiation induced effects on the structural, optical, electrical and shielding properties of lithium borate glasses	113
		5.2.2	Growth of low resistive nickel mono-silicide phase under low energy Si ion irradiation at room temperature	115
		5.2.3	Elevated Transition Temperature of VO2 Thin Films via Cr doping	115
		5.2.4	A comparative study of 100MeV Ag ⁹⁺ ion irradiation induced modifications in structural, optical, and electrical properties of α- Al2O3 by fluence variation	117
		5.2.5	Thickness dependent surface properties and scaling law of nano-dimensional SnTe thin films	118
		5.2.6	Structural and phase transformation studies of 1.4 MeV Kr ion beam irradiated zirconia	118

5.2.7	Properties of Gd2NiMnO6 Double Perovskite by Ca Doping	119
5.2.8	Investigating the Structural and Dielectric Properties of CoFe2–xNixO4 Spinel Ferrite.	119
5.2.9	The Effects of Swift Heavy Ion Irradiation on Silicon NPN Transistors	120
5.2.10	50 MeV Lithium Ion Irradiation Studies on 200GHz SiGe HBTs at Low Temperature	121
5.2.11	Origin of intense blue-green emission and bandgap engineering in SrTiO3 thin films using ion-beam techniques: An synchrotron-based spectroscopic study	122
5.2.12	Pinning-assisted out-of-plane anisotropy in reverse stack FeCo/FePt intermetallic bilayers for controlled switching in spintronics	123
5.2.13	Domain state modulation by interfacial diffusion in FePt/FeCo thin films: Experimental approach with micromagnetic modelling	124
5.2.14	Magnetization Reversal Behavior in Electrodeposited Fe-Co-Ni Thin Films	125
5.2.15	Ion beam induced ionic conductivity of PVDF based separators for the energy storage device	126
5.2.16	Noble Metal atoms implanted TiO2 sensitized third generation solar cells	127
5.2.17	Synthesis and diverse property studies on RGO based Ni-doped Cobalt oxide nanomaterials	127
5.2.18	150 MeV Ag ⁺¹¹ swift heavy ion irradiation effects on spin coated BSFO/CFO/LNO for RRAM and magnetodielectric devices	128
5.2.19	Ion implantation studies on Ga2O3	130
5.2.20	Structural Phase Transitions induced by Swift Heavy Ion Irradiations in Lead Free Ferroelectric Perovskite Oxides	131
5.2.21	Structural, morphological and electrical properties of Co and Ti co-doped α -Fe2O3 system	132
5.2.22	Role of swift heavy ion irradiation in device characteristics of manganite based thin films	132
5.2.23	Anisotropic Magnetoelectric and Magnetotransport Properties of Manganite Based Thin Films	133
5.2.24	Radiation Damage in Polyethylene Terephthalate due to 1.75 MeV N ⁵⁺ Ion – studied by XRD, UV-Vis Spectroscopy and FTIR Spectroscopy	133
5.2.25	Influence of Swift Heavy Ion Irradiation on Charge Transport Properties of Manganite Based Thin Films	134
5.2.26	Temperature dependent swift heavy ion induced effects in Cerium and Yttrium doped Zirconolite	135
5.2.27	Tunable Characteristics of Porous Silicon Optical Microcavities by Energetic N Ion Beams Interactions	136
5.2.28	Effect of $\operatorname{Ar}^{\scriptscriptstyle{+6}}$ ion irradiation on write-once-read many times memory behavior of am-BTO thin film	137
5.2.29	Growth and Investigation of Synergistic effect of TiO2@CuCrS heterojunction for waste water treatment under solar energy	138
5.2.30	Ion beam irradiation induced gold and silver nanomaterials as SERS substrate for chemical and biological sensing	139
5.2.31	Study of 120 MeV Ag ion-induced effect on Co0.5Cu0.5Fe2O4/polypyrrole nanocomposites	140
5.2.32	Roughening and Sputtering Kinetics of PT Thin Films at Different Angles JF ION Irradiation	142
5.2.33	Synthesis of Bimetallic Auag Nanoparticles By Sequential Ion Implantation for Modifying Surface-plasmon-resonance Properties	143
5.2.34	Effect of Li Ion Implantation on Structural and optical Properties of (K,NA)NBO3 Thin Films	144
5.2.35	Engineering the Properties of KNN Thin Films Using 120 Mev Au Ion Beam Irradiation	145

	3.4.30	Engineering of Structural Froperties of Gd22/207 via Swift freavy for firadiation	140
	5.2.37	Semiconductor-to-metal Transition In Nanocomposites Of Wide Bandgap Oxide Semiconductors	147
	5.2.38	Gamma-ray Induced Modifications on Zro2 Thin Films: Structural and Optical Properties	148
	5.2.39	Signature of Strong Localization And Crossover Conduction Processes In Doped ZNO Thin Films: Synergetic Effect of Doping Fraction and Dense Electronic Excitations	148
	5.2.40	Tuning of Visible Photoluminescence By Defects Induced By Swift Heavy Ion Irradiation In Zinc Oxide Films	149
	5.2.41	Investigation of Structural, Morphological, and Optical Properties of Mgtio ³ Thin Films Using High Energy Ion Beam Irradiation	150
	5.2.42	Effects of 120 Mev Ag9+ Shi Irradiation on The Structural, Optical snd Electrical Proper of Pristine and Ni Doped Bifeo3 Thin Films Grown By Pulsed Laser Deposition	ties 150
	5.2.43	Nanostructures From Ion Irradiation of Metal Films: Aluminium And Indium on Silicon	151
	5.2.44	Localized Thermal Spike Driven Morphology and Electronic Structure Transformation In Swift Heavy Ion Irradiated Tio2 Nanorods	153
	5.2.45	Interface Modification of Fe/cr/al Magnetic Multilayer By Swift Heavy Ion Irradiation	153
	5.2.46	Effect of Ni And Co Co-implantation on The Structural, optical, And Magnetic Properties of Zno	154
	5.2.47	120 Kev Ar Ion Beam Irradiation of Magnetron Sputtered Zno Thin Films	154
	5.2.48	Ion Induced Modification of Ferroelectric Polymer Composites For Emi Shielding	155
	5.2.49	Formation of Self-organized Nano-dimensional Structures on Inp Surfaces Using Ion Irradiation and Their Wettability	156
	5.2.50	SHI induced modifications in multifunctional properties of BiFeO ₃ based heterostructures	1 <mark>57</mark>
	5.2.51	A reversible tuning of fermi level in bisbte ₃ thin films through ion implantation	158
	5.2.52	Study of sub-band states formation in the optical band gap of CuGaS ₂ thin films by electronic excitations	159
	5.2.53	Enhancement of Photoelectric properties of Cu ₂ ZnSnS ₄ thin films by electronic excitation induced by swift heavy ions	160
	5.2.54	Irradiation induced interface and magnetic study of Zinc ferrite/insulator/ cobalt ferrite multilayers	<mark>1</mark> 61
	5.2.55 5.2.56	Characterizing the defects and ferromagnetism in metal oxides: The case of magnesium oxide A study of structural and electrical properties of tetravalent metal doped α - Fe ₂ O ₃ systems	161 162
	5. 2.57	Surface morphology and microstructural studies of Cu doped CdS Qds	162
	5.2.58	Influence of Swift Heavy Ion Irradiation on Charge Transport Properties of Manganite-Based Thin Films	164
5.3	RADI	ATION BIOLOGY	165
	5.3.1	Studies on TLR agonist (MOS) Mediated Modification in Biological Radiation Response(s) <i>in vitro</i> after carbon beam exposure	165
	5.3.2	Lithium Chloride enhances survival of INT407 cells in response to High Linear Energy Transfer Radiation	165
	5.3.3	Cellular response to high LET radiation exposure with special reference to mitochondria	166
	5.3.4	Study of DNA damage response pathway of A549 cells treated with carbon ion in presence of PARP-1 inhibitor	167

4	ACCI	LEKATOR MASS SPECTROMETRI AND GEOCHRONOLOGI	108
	5.4.1	Radiocarbon Dating for determining sedimentation rate and associated palaeoclimate from the Kolahoi Glacier outwash plain	168
	5.4.2	Investigating the radiocarbon chronology of wetland sediment cores from Kashmir Himalaya	169
	5.4.3	Ventilation of Northern Indian Ocean during the last glacial-interglacial cycle	170
	5.4.4	¹⁴ C dating of Ground Water from Malwa Region of Punjab State using Accelerator Mass Spectrometry (AMS)	171
	5.4.5	Study of role of nitrate in determination of elemental concentration of heavy elements in ground water using Inductively Coupled Plasma Mass Spectrometry (ICP-MS)	172
	5.4.6	Development of Paleo-earthquake History in the western part of Central Seismic Gap alotthe Himalayan Frontal Thrust (HFT), Kumaun Himalaya: Multi-Dating approach	ng 173
	5.4.7	Geomorphological and sedimentological evidences of palaeo-outburst flood events from TanglangLa- Gya catchment of River Indus, Ladakh, India	174
	5.4.8	Climate variability since the Last Glacial Maxima from Khalsi palaeolake deposit in the cold arid mountain region of Ladakh: A multiproxy approach	174
	5.4.9	Chronology of the glacial lake deposits from the Ladakh Range, NW Trans Himalaya: Implications to palaeoclimate during the late Quaternary	175
	5.4.10	Late Quaternary Indian Summer Monsoon Records from Baspa Valley and Chakrata Region, Northwest Himalaya	175
	5.4.11	Investigating the rates and kinematics of bedrock lowering and soil production, spatially averaged catchment scale denudation rates and sediment redistribution within a small Himalayan River catchment	176
	5.4.12	Source apportionment of carbonaceous aerosols in Indo-Gangetic region Patna, Bihar usir radiocarbon (14C)	ng 178
	5.4.13	Cosmogenic Radionuclide dating of glacial deposits of Thajiwas valley of Kashmir Himalaya	179
	5.4.1 <mark>4</mark>	Paleomonsoon study using multi-proxy data from marine and lake archives	179
	5.4.15	Paleomonsoon study using multi-proxy data from marine and lake archives	180
	5.4.16	Radiocarbon dating using AMS of samples from Vaigai River Civilization Site	181
	5.4.17	Comparison of luminescence and radiocarbon ages of trans-Himalayan palaeo-lake sediments (Ladakh)	182
	5.4.18	Southwest monsoon response to Surface Hydrographic variations in western Arabian Sea through the last 172 kyr	183
	5.4.19	AMS dating of the Archaeological sites of Digaru – Kolong River Valley	183
5	ATON	MIC AND MOLECULAR PHYSICS	184
	5.5.1	X-ray energy shift and multiple ionisation in Bi due to 2-5 MeV Xe-ion impact.	184
	5.5.2	Exploring the influence of target atomic number (\overline{q})	186
	5.5.3	Significance of the high charge state of projectile ions inside the target and its role in electron capture leading to target-ionization phenomena	187
	5.5.4	Experimental observation of sequential pathway in three body breakup of acetylene	187

6. ACADEMIC ACTIVITIES

6.1	BEAM UTILIZATION BY USERS	189
	6.1.1 Low Energy Ion Beam Facility and Low Energy Negative Ion Implanter Facility Beam Time Utilization and Experiments performed (April, 2021 to March, 2022)	189
	6.1.2 Pelletron Beam Time Utilization and Experiments performed (April, 2021 to March, 2022)	190
	6.1.3 List of Users Family	192
6.2	STUDENT PROGRAMME	203
	6.2.1 Online B.Sc. (Physics) Students Summer Programme	203
	6.2.2 M.Sc. Orientation Programme	203
	6.2.3 PhD Teaching Programme	203
	6.2.4 Teaching Labactivities	204
6.2	LIDDADY	205
6.3	LIBRARY	205
6.4	ACADEMIC ACTIVITIES HELD IN 2021-2022	205
6.5	FORTHCOMING EVENTS: 2022	207
6.6	LIST OF PH.D AWARDEE	207
6.7	LIST OF PUBLICATIONS IN THE YEAR 2021-22	209
6.8	LIST OF TECHNICAL REPORTS/MEMOS	218
6.9	SCHOOLS, WORKSHOPS, ACQUAINTANCE PROGRAMMES, CONFERENCES, FOUNDATION DAY & NATIONAL SCIENCE DAY CELEBRATIONS	219
6.10	HINDI CELL ACTIVITIES	244
APPENDI	X - I	246
APPENDI	X - II	250
APPENDI	X - III	254
APPENDI	X - IV	261