DESIGN AND DEVELOPMENT OF PILL-BOX TYPE REDUCED WAVEGUIDE RF WINDOW FOR 5 GHZ, 250 KW KLYSTRON

O S Lamba, Meenu Kaushik, Jyoti Yadav, Archana Yadav, Priyanka Jangir, Vishnu Jindal, Sunit, Vijay Singh, L M Joshi
Microwave Tubes Area, Central Electronics Engineering Research Institute. Pilani: 333031

Abstract
The paper deals with the design study of pillbox-type reduced waveguide RF window for 5 GHz klystron. Numerical simulation of the window has been carried out using the software “CST MW Studio”. The proposed window is designed for 5 GHz operating frequency for handling a few kilowatts of RF power. The simulated results are validated through experiments. In the proposed window geometry, metalized alumina disc (99.5 % purity) of diameter 56 mm and thickness 1.5 mm is brazed in a cylindrical waveguide of diameter 56 mm. The cylindrical waveguide is terminated to WR 187 waveguide at its one end and 8 mm reduced height waveguide on the other end of the window. The return loss and insertion loss of the window length 26.7 mm has been found to be –34.88 dB and - 0.014 dB respectively. The bandwidth of 60 MHz is achieved.

INTRODUCTION
RF window is one of the important issues for developing the high power klystrons and accelerators. RF window is a critical component of all microwave high power tubes and is used on the input as well as output section of the device for the transport of microwave power from vacuum to external pressurized atmosphere. RF window is a passive component that must be transparent to microwaves and hold ultra high vacuum. The desired features of an ideal window are: minimum reflection, minimum insertion loss, high power handling capability, wide bandwidth, excellent mechanical strength, high thermal shock resistance and vacuum tightness. Pill-box type microwave windows are generally preferred for high power klystrons due to their higher capacity for handling high peak and average RF power. The other functional advantages are broad bandwidth and easy impedance matching with the rest of the transmission line. The studies on high power RF windows are motivated by the need for high peak power klystron 5 MW peak and 250 kW average power for linear accelerators.

Specifications of C-band klystron
Operating Frequency: 5 GHz
Output Power : 250 kW
Beam Voltage : 60 KV
Beam Current : 10 Amps

Focus : Electromagnet
Efficiency : > 40 %
Gain : > 45 dB

WINDOW DESIGN
Asymmetric pillbox type window shown in Fig.1 has been simulated with following dimensions.

Alumina ceramic disc diameter : 56 mm
Alumina disc thickness : 1.5 mm
Window diameter : 56 mm
Input side circular W/G length : 30 mm
Output side circular W/G length : 30 mm
Input W/G a = 47.55 mm b = 8 mm
Output W/G a = 47.55 mm b = 22.15 mm

In 3D design window look like as figure below:

Figure 1: Schematic diagram of Asymmetric pillbox type RF window.

Figure 2: 3D view of Asymmetric pillbox type RF window.
SIMULATION AND DISCUSSIONS

The asymmetric pillbox type RF window is designed for C-band high power klystron where input side waveguide is reduced. As described above the input, output cylindrical waveguide length is different; we found in simulation the analytical dimensions have small variation with simulated results. But the approach to change the length of the circular waveguide on the both side of dielectric disc well followed.

Here are the simulated values of RL & IL by dielectric constant variation and keeping frequency constant at 5 GHz. The simulated length found 26.7 mm with 1.50 mm thickness alumina disc. The measured value of return loss and insertion loss of this asymmetric RF window is found to be 35.98 dB and 0.0116 dB respectively.

Table 1. Simulated values of RL & IL

<table>
<thead>
<tr>
<th>Dielectric Constant</th>
<th>Length L_1</th>
<th>Length L_2</th>
<th>Return loss</th>
<th>Inertion loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.2</td>
<td>8.215</td>
<td>16.985</td>
<td>26.5073</td>
<td>0.0227</td>
</tr>
<tr>
<td>9.3</td>
<td>8.085</td>
<td>17.115</td>
<td>29.8538</td>
<td>0.0173</td>
</tr>
<tr>
<td>9.4</td>
<td>7.965</td>
<td>17.235</td>
<td>34.8872</td>
<td>0.0142</td>
</tr>
<tr>
<td>9.5</td>
<td>7.85</td>
<td>17.35</td>
<td>47.185</td>
<td>0.0127</td>
</tr>
</tbody>
</table>

From CST software simulation, we get the return loss – 34.009 dB and insertion loss ~0.014dB at 5GHz frequency as shown in figure below:

Figure 3: Simulated Return loss and Insertion loss.

CONCLUSION

The Asymmetric pillbox RF window of type 1, performance has been found better than the symmetrical RF windows. The Asymmetric pillbox type 1 window RL – 34.009 dB and IL -0.014 dB has been achieved. This RF window have been planned to use in design and development of 5 MW peak and 250 kW average power C-band klystron. Performance of RF window remains in acceptable range .A method for design of RF window with asymmetrically placed ceramic in cylindrical waveguide has been developed. It is very useful for devices like high power klystrons which use reduced height waveguide on tube side to accommodate focusing coils. The asymmetric window design with excellent matching has been achieved without any extra matching transformer which is normally required in case of symmetrical windows.

REFERENCES